A Hybrid MultiLayer Perceptron Under-Sampling with Bagging Dealing with a Real-Life Imbalanced Rice Dataset

Faculty Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Information MDPI Volume:
Keywords : , Hybrid MultiLayer Perceptron Under-Sampling with Bagging    
Abstract:
Classification algorithms have shown exceptional prediction results in the supervised learning area. These classification algorithms are not always efficient when it comes to real-life datasets due to class distributions. As a result, datasets for real-life applications are generally imbalanced. Several methods have been proposed to solve the problem of class imbalance. In this paper, we propose a hybrid method combining the preprocessing techniques and those of ensemble learning. The original training set is undersampled by evaluating the samples by stochastic measurement (SM) and then training these samples selected by Multilayer Perceptron to return a balanced training set. The MLPUS (Multilayer perceptron undersampling) balanced training set is aggregated using the bagging ensemble method. We applied our method to the real-life Niger_Rice dataset and forty-four other imbalanced datasets from the KEEL repository in this study. We also compared our method with six other existing methods in the literature, such as the MLP classifier on the original imbalance dataset, MLPUS, UnderBagging (combining random under-sampling and bagging), RUSBoost, SMOTEBagging (Synthetic Minority Oversampling Technique and bagging), SMOTEBoost. The results show that our method is competitive compared to other methods. The Niger_Rice real-life dataset results are 75.6, 0.73, 0.76, and 0.86, respectively, for accuracy, F-measure, G-mean, and ROC with our proposed method. In contrast, the MLP classifier on the original imbalance Niger_Rice dataset gives results 72.44, 0.82, 0.59, and 0.76 respectively for accuracy, F-measure, G-mean, and ROC
   
     
 
       

Author Related Publications

  • Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020 More
  • Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021 More
  • Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018 More
  • Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013 More
  • Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
  • Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014 More
  • Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012 More
Tweet