Efficient fractional-order modified Harris hawks optimizer for proton exchange membrane fuel cell modeling

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Engineering Applications of Artificial Intelligence Elsevier Volume:
Keywords : Efficient fractional-order modified Harris hawks optimizer    
Abstract:
An effective harmony between the exploration and exploitation phases in meta-heuristics is an essential design consideration to provide reliable performance on a wide range of optimization problems. This paper proposes a novel approach to enhance the exploratory behavior of the Harris hawks optimizer (HHO) based on the fractional calculus (FOC) memory concept. In the proposed variant of the HHO, a hawk moves with a fractionalorder velocity, and the rabbit escaping energy is adaptively tuned based on FOC parameters to avoid premature convergence. As a result, the fractional-order modified Harris hawks optimizer (FMHHO) is proposed. The sensitivity of the algorithm performance vis-a-vis the FOC parameters is addressed, and the best variant is recommended based on twenty-three benchmarks. For validating the quality of the proposed variant, twentyeight benchmarks of CEC2017 are tested. For evaluating the proposed variant against the other present-day techniques, several statistical measures and non-parametric tests are performed. Moreover, to demonstrate the applicability of the proposed technique, the proton exchange membrane fuel cell (PEMFC) model parameters estimation process is handled based on several measured datasets. In this series of experiments, the FMHHO variant is compared with the standard HHO and the other techniques based on intensive statistical metrics, mean convergence curves, and dataset fitting. The overall outcome shows that the FOC memory property improves the performance of the classical HHO and leads to accurate and robust solutions fitting the measured data.
   
     
 
       

Author Related Publications

  • Ahmed Fathy Mohamed Ali Ali, "Optimization of a PV fed water pumping system without storage based on teaching-learning-based optimization algorithm and artificial neural network", ELSEVIER, 2016 More
  • Ahmed Fathy Mohamed Ali Ali, "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions", Elsevier Ltd., 2017 More
  • Ahmed Fathy Mohamed Ali Ali, "Grey Wolf Optimizer for Optimal Sizing and Siting of Energy Storage System in Electric Distribution Network", Taylor & Francis, 2017 More
  • Ahmed Fathy Mohamed Ali Ali, "Parameter estimation of photovoltaic system using imperialist competitive algorithm", Elsevier Ltd., 2017 More
  • Ahmed Fathy Mohamed Ali Ali, "A novel optimal parameters identification of triple-junction solar cell based on a recently meta-heuristic water cycle algorithm", Elsevier Ltd., 2017 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Attia Abdelaziz Hussien Ali, "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet