Scalable Clustering Algorithms for Big data: A Review

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages: 80015 - 80027
Authors:
Journal: IEEE Access IEEE Volume:
Keywords : Scalable Clustering Algorithms , , data: , Review    
Abstract:
Clustering algorithms have become one of the most critical research areas in multiple domains, especially data mining. However, with the massive growth of big data applications in the cloud world, these applications face many challenges and difficulties. Since Big Data refers to an enormous amount of data, most traditional clustering algorithms come with high computational costs. Hence, the research question is how to handle this volume of data and get accurate results at a critical time. Despite ongoing research work to develop different algorithms to facilitate complex clustering processes, there are still many difficulties that arise while dealing with a large volume of data. In this paper, we review the most relevant clustering algorithms in a categorized manner, provide a comparison of clustering methods for large-scale data and explain the overall challenges based on clustering type. The key idea of the paper is to highlight the main advantages and disadvantages of clustering algorithms for dealing with big data in a scalable approach behind the different other features.
   
     
 
       

Author Related Publications

  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021 More
  • Khalied Mohamed Hosny, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022 More
  • Khalied Mohamed Hosny, "Fast computation of accurate Zernike moments", Springer, 2008 More
  • Khalied Mohamed Hosny, "Accurate Computation of QPCET for Color Images in Different Coordinate Systems", SPIE, 2017 More

Department Related Publications

  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet