COVID-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions

Faculty Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Applied Soft Computing Elsevier Volume:
Keywords : COVID-19 X-ray images classification based , enhanced    
Abstract:
Classification of COVID-19 X-ray images to determine the patient’s health condition is a critical issue these days since X-ray images provide more information about the patient’s lung status. To determine the COVID-19 case from other normal and abnormal cases, this work proposes an alternative method that extracted the informative features from X-ray images, leveraging on a new feature selection method to determine the relevant features. As such, an enhanced cuckoo search optimization algorithm (CS) is proposed using fractional-order calculus (FO) and four different heavy-tailed distributions in place of the Lévy flight to strengthen the algorithm performance during dealing with COVID-19 multi-class classification optimization task. The classification process includes three classes, called normal patients, COVID-19 infected patients, and pneumonia patients. The distributions used are Mittag-Leffler distribution, Cauchy distribution, Pareto distribution, and Weibull distribution. The proposed FO-CS variants have been validated with eighteen UCI data-sets as the first series of experiments. For the second series of experiments, two data-sets for COVID-19 X-ray images are considered. The proposed approach results have been compared with well-regarded optimization algorithms. The outcomes assess the superiority of the proposed approach for providing accurate results for UCI and COVID-19 data-sets with remarkable improvements in the convergence curves, especially with applying Weibull distribution instead of Lévy flight.
   
     
 
       

Author Related Publications

  • Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020 More
  • Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021 More
  • Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018 More
  • Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013 More
  • Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
  • Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014 More
  • Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012 More
Tweet