Modeling Customer Lifetime Value Under Uncertain Environment

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Neutrosophic Sets and Systems University of New Mexico Volume:
Keywords : Modeling Customer Lifetime Value Under Uncertain Environment    
Abstract:
Customer lifetime value (CLV) is an essential measure to determine the level of profitability of a customer to a firm. Customer relationship management treats CLV as the most significant factor for measuring the level of purchases and, consequently, the profitability of a given customer. This motivates researchers to compete in developing models to maximize the value of CLV. Dynamic programming models in general—and the Q-learning model specifically—play a significant role in this area of research as a model-free algorithm. This maximizes the long-term future rewards of a certain agent, given their current state, set of possible actions, and the next state of that agent, assuming the customer represents the agent and CLV is their future reward. However, due to the stochastic nature of this problem, it is inaccurate to obtain a single crisp value for Q. In this paper, fuzzy logic and neutrosophic logic shall be utilized to search for the membership values of Q to capture the stochasticity and uncertainty of the problem. Both fuzzy Q-learning and neutrosophic Qlearning were implemented using two membership functions (i.e., trapezoidal, and triangular) to search for the optimal Q value that maximizes the customer's future rewards. The proposed algorithms were applied to two benchmark datasets: The Knowledge Discovery and Data Mining (KDD) cup 1998 direct mailing campaign dataset and the other from Kaggle, related to direct mailing campaigns. The proposed algorithms proved their effectiveness and superiority when comparing them to each other or the traditional deep Q-learning models.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Saber Mohamed, "Training and Testing a Self-Adaptive Multi-Operator Evolutionary Algorithm for Constrained Optimization", ELSEVEIR, 2015 More
  • Saber Mohamed, "An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems", IEEE, 2013 More
  • Saber Mohamed, "Differential Evolution with Dynamic Parameters Selection for Optimization Problems", IEEE, 2014 More
Tweet