A New Design of Mamdani Complex Fuzzy Inference System for Multiattribute Decision Making Problems

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: IEEE TRANSACTIONS ON FUZZY SYSTEMS IEEE Volume:
Keywords : , , Design , Mamdani Complex Fuzzy Inference System    
Abstract:
This article proposes the Mamdani complex fuzzy inference system (Mamdani CFIS) to improve performance of the classical FIS and complex FIS. The applicability of the proposed CFIS is demonstrated by applying it to six commonly available datasets from UCI Machine Learning under the comparison with Mamdani FIS and the Adaptive Neuro Complex Fuzzy Inference System (ANCFIS). It is successfully proven that the proposed Mamdani CFIS is computationally less expensive and presents a more efficient method to handle time-series data and time-periodic phenomena, among all the fuzzy IS found thus far in the literature. Furthermore, the novelty of CFIS mainly lies in its implementation of the complex number throughout the entire procedures of computation. This gives much greater flexibility of implementing unexpected, nonlinear fluctuations.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Saber Mohamed, "Self-adaptive Mix of Particle Swarm Methodologies for Constrained Optimization", ELSEVIER, 2014 More
  • Saber Mohamed, "Testing United Multi-Operator Evolutionary Algorithms on The CEC2014 Real-Parameter Numerical Optimization", IEEE, 2014 More
  • Saber Mohamed, "GA with a New Multi-Parent Crossover for Constrained Optimization", IEEE, 2011 More
  • Eman samir hasan sayed, "Decision Making Assessment for Site Selection Using the AHP and TOPSIS Methods", Statistical studies institution, Cairo University, Egypt, 2007 More
  • Israa Abdel Ghaffar Salem Mohammed, "Estimating Bed Requirements for a Pediatric Department in a University Hospital in Egypt", Modern Management Science & Engineering, 2016 More
Tweet