A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection

Faculty Computer Science Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Artifcial Intelligence Review Springer Netherlands Volume:
Keywords : , hybrid Harris Hawks optimization algorithm with    
Abstract:
The significant growth of modern technology and smart systems has left a massive production of big data. Not only are the dimensional problems that face the big data, but there are also other emerging problems such as redundancy, irrelevance, or noise of the features. Therefore, feature selection (FS) has become an urgent need to search for the optimal subset of features. This paper presents a hybrid version of the Harris Hawks Optimization algorithm based on Bitwise operations and Simulated Annealing (HHOBSA) to solve the FS problem for classification purposes using wrapper methods. Two bitwise operations (AND bitwise operation and OR bitwise operation) can randomly transfer the most informative features from the best solution to the others in the populations to raise their qualities. The Simulate Annealing (SA) boosts the performance of the HHOBSA algorithm and helps to flee from the local optima. A standard wrapper method K-nearest neighbors with Euclidean distance metric works as an evaluator for the new solutions. A comparison between HHOBSA and other state-of-the-art algorithms is presented based on 24 standard datasets and 19 artificial datasets and their dimension sizes can reach up to thousands. The artificial datasets help to study the effects of different dimensions of data, noise ratios, and the size of samples on the FS process. We employ several performance measures, including classification accuracy, fitness values, size of selected features, and computational time. We conduct two statistical significance tests of HHOBSA like paired-samples T and Wilcoxon signed ranks. The proposed algorithm presented superior results compared to other algorithms.
   
     
 
       

Author Related Publications

  • Doaa El-Shahat Barakat Mohammed, "Solving 0–1 knapsack problem by binary flower pollination algorithm", Springer, 2018 More
  • Doaa El-Shahat Barakat Mohammed, "A modified flower pollination algorithm for the multidimensional knapsack problem: human-centric decision making", Springer, 2017 More
  • Doaa El-Shahat Barakat Mohammed, "Integrating the whale algorithm with Tabu search for quadratic assignment problem: A new approach for locating hospital departments", Elsevier, 2018 More
  • Doaa El-Shahat Barakat Mohammed, "A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem", North-Holland, 2018 More
  • Doaa El-Shahat Barakat Mohammed, "A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem", Springer Berlin Heidelberg, 2017 More

Department Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Saber Mohamed, "Training and Testing a Self-Adaptive Multi-Operator Evolutionary Algorithm for Constrained Optimization", ELSEVEIR, 2015 More
  • Saber Mohamed, "An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems", IEEE, 2013 More
  • Saber Mohamed, "Differential Evolution with Dynamic Parameters Selection for Optimization Problems", IEEE, 2014 More
Tweet