Smart Supervision of Cardiomyopathy Based on Fuzzy Harris Hawks Optimizer and Wearable Sensing Data Optimization: A New Model

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: IEEE Transactions on Cybernetics IEEE Volume:
Keywords : Smart Supervision , Cardiomyopathy Based , Fuzzy Harris    
Abstract:
Cardiomyopathy is a disease category that describes the diseases of the heart muscle. It can infect all ages with different serious complications, such as heart failure and sudden cardiac arrest. Usually, signs and symptoms of cardiomyopathy include abnormal heart rhythms, dizziness, lightheadedness, and fainting. Smart devices have blown up a nonclinical revolution to heart patients’ monitoring. In particular, motion sensors can concurrently monitor patients’ abnormal movements. Smart wearables can efficiently track abnormal heart rhythms. These intelligent wearables emitted data must be adequately processed to make the right decisions for heart patients. In this article, a comprehensive, optimized model is introduced for smart monitoring of cardiomyopathy patients via sensors and wearable devices. The proposed model includes two new proposed algorithms. First, a fuzzy Harris hawks optimizer (FHHO) is introduced to increase the coverage of monitored patients by redistributing sensors in the observed area via the hybridization of artificial intelligence (AI) and fuzzy logic (FL). Second, we introduced wearable sensing data optimization (WSDO), which is a novel algorithm for the accurate and reliable handling of cardiomyopathy sensing data. After testing and verification, FHHO proves to enhance patient coverage and reduce the number of needed sensors. Meanwhile, WSDO is employed for the detection of heart rate and failure in large simulations. These experimental results indicate that WSDO can efficiently refine the sensing data with high accuracy rates and low time cost.
   
     
 
       

Author Related Publications

  • Laila Abdel Fattah Shawqi Ibrahim, "Elite opposition-flower pollination algorithm for quadratic assignment problem", IOS press, 2017 More
  • Laila Abdel Fattah Shawqi Ibrahim, "A comparative study of cuckoo search and flower pollination algorithm on solving global optimization problems", emerald insight, 2017 More
  • Laila Abdel Fattah Shawqi Ibrahim, "Metaheuristic Algorithms: A Comprehensive Review", Elsevier‏, 2018 More
  • Laila Abdel Fattah Shawqi Ibrahim, "A comprehensive study of cuckoo-inspired algorithms", Springer‏, 2018 More
  • Laila Abdel Fattah Shawqi Ibrahim, "An improved nature inspired meta-heuristic algorithm for 1-D bin packing problems", Springer‏, 2018 More

Department Related Publications

  • Saber Mohamed, "Online Generation of Trajectories for Autonomous Vehicles using a Multi-Agent System", IEEE, 2014 More
  • Saber Mohamed, "Parameters Adaptation in Differential Evolution", IEEE, 2012 More
  • Eman samir hasan sayed, "Using Hybrid Dependency Identification with a Memetic Algorithm for Large Scale Optimization Problems", Springer Berlin Heidelberg, 2012 More
  • Eman samir hasan sayed, "A Decomposition-based Algorithm for Dynamic Economic Dispatch Problems", IEEE, 2014 More
  • Eman samir hasan sayed, "Decomposition-based evolutionary algorithm for large scale constrained problems", Elsevier Inc, 2014 More
Tweet