An accurate numerical approach for studying perovskite solar cells

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: International Journal of Energy Research willy Volume:
Keywords : , accurate numerical approach , studying perovskite solar cells    
Abstract:
This work presents different numerical methods that are used for the first time in solving Perovskite solar cells (PSCs). Classical differential quadrature, sinc, and discrete singular convolution (Regularized Shannon and Delta Lagrange kernels) methods are employed for studying this problem. The governing equations are derived based on Poisson's and continuity equations. The different quadrature techniques are introduced to convert the system of nonlinear partial differential equations to nonlinear algebraic system. Then, an iterative method is used to solve this system. Convergence and efficiency of the obtained results with error ≤108 depend on various computational characteristics for each technique. The computed results match with previous experiment, exact, finite difference, SCAPS 1-D simulation software, and finite element scheme. Then, the comprehensive parametric study is explored to show the effects of density states, gap energy, thickness, temperatures, lifetimes, wavelength, absorption coefficient, recombination prefactor, and recombination mechanisms whether direct or indirect on power conversion efficiency (PCE) and charge transport of solar cells with and without interface material. After all that have been studied on PSCs, it was found that the best value of PCEs was 32%. Thus, the computed results of the present schemes may be useful for improving the performance level of PSCs.
   
     
 
       

Author Related Publications

  • Ola Ragab Abdou Mohamed, "Analysis of Composite Plates Using Moving Least Squares Differential Quadrature Method", Science Direct, 2014 More
  • Ola Ragab Abdou Mohamed, "Efficient Quadrature Solution for Composite Plate Problems", medwelljournals, 2014 More
  • Ola Ragab Abdou Mohamed, "Quadrature Analysis of Functionally Graded Materials", IJET-IJENS, 2014 More
  • Ola Ragab Abdou Mohamed, "Natural frequencies of a functionally graded cracked beam using the differential quadrature method", Science Direct, 2009 More
  • Ola Ragab Abdou Mohamed, "Vibration analysis of structural elements using differential quadrature method", Cairo University, 2012 More

Department Related Publications

  • Amr Mohamed Salaheldeen Abdelaziem Mohamed, "Green’s function expansion for exponentially graded elasticity", لايوجد, 1900 More
  • Hany Arafa Abdelmohsen Ali Metwallie, "Blended Learning Approach in Research and Education of Laboratory Physics", Conference ICL2010 September 15 -17, 2010 Hasselt, Belgium, 2010 More
  • Magda Mahmoud Mohamed Kasem, "Group similarity solutions of (2 + 1) Boiti-Leon-Manna-Pempinelli Lax pair.", Elsvier, 2014 More
  • Ola Ragab Abdou Mohamed, "Quadrature Analysis of Functionally Graded Materials", IJET-IJENS, 2014 More
  • Rania Bahgat Mohamed Amer, "An Efficient Method to Solve Thermal Wave Equation", Scientific Research, 2014 More
Tweet