Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory

Faculty Engineering Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Engineering with Computers Springer Volume:
Keywords : Nonlinear thermal buckling , postbuckling analysis , bidirectional functionally    
Abstract:
In the present study, the nonlinear thermal buckling, postbuckling, and snap-through phenomenon of higher-order shear deformable tapered bidirectional functionally graded (BDFG) microbeams are comprehensively investigated under diferent types of thermal loading, for the frst time. The thermomechanical properties of the BDFG microbeam are assumed to be functions of temperature, axial, and thickness directions. Reddy’s parabolic shear deformation beam theory with the von Kármán nonlinearity is employed to derive the variable coefcient governing nonlinear diferential equations on the basis the physical neutral surface concept. Size-dependent efect is captured in the formulation employing the modifed couple stress theory. The generalized diferential quadrature method (GDQM) is used to discretize the motion equations considering diferent boundary conditions. The resulting system of nonlinear algebraic equations is solved iteratively using Newton’s method. Theoretical analysis and numerical results indicate that, depending on the shear deformation beam theory, boundary conditions, and the type of thermal load, the response of the BDFG microbeam may be of the bifurcation or snap-through buckling type of instability. Numerical parametric studies are conducted to explore the infuences of thermal load type, material property gradient indexes, boundary conditions, material temperature dependency, taperness ratio, and microstructural length scale on critical thermal buckling load, thermal postbuckling, and equilibrium paths of the BDFG microbeam.
   
     
 
       

Author Related Publications

  • Salwa Amien Mohamed ebrhiem, "A novel differential-integral quadrature method for the solution of nonlinear integro-differential equations", John Wiley & Sons Ltd, 2021 More
  • Salwa Amien Mohamed ebrhiem, "Thermal vibration characteristics of pre/post‑buckled bi‑directional functionally graded tapered microbeams based on modifed couple stress Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "New Smoother to Enhance Multigrid-Based Methods for Bratu Problem", Elsevier, 2008 More
  • Salwa Amien Mohamed ebrhiem, "Optimally efficient multigrid algorithms for incompressible Euler equations", Emerald Group Publishing Limited, 2008 More
  • Salwa Amien Mohamed ebrhiem, "Adaptive FAS-multigrid method for nonlinear elliptic equations on unstructured grids", Wiley InterScience, 2007 More

Department Related Publications

  • Ashraf Abdelfattah Ali Hassanein, "Hot-Pressed Electrospun PAN Nano Fibers: An Idea for Flexible Carbon Mat", Journal of Materials Processing Technology,2009; 209:4617-4620, 2009 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", www.elsevier.com/locate/compstruct, 2014 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", www.elsevier.com, 2013 More
  • Marwa Ahmed Abdelbaky Salam , "Interlaminar shear behavior of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composite laminates", ScienceDirect, 2012 More
  • Marwa Ahmed Abdelbaky Salam , "Statistical analysis of monotonic mechanical properties for unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid polymeric composites", sage, 2013 More
Tweet