Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages: 1291-1302
Authors:
Journal: Renewable Energy ELSEVIER Volume: 178
Keywords : Efficient experimental energy management operating , FC/battery/SC    
Abstract:
Nowadays, the energy management of multisource hybrid systems is becoming an interesting and challenging topic for many researchers. The judicious choice of the energy management strategy not only allows for the best distribution of energy between the different sources, but also reduces the system's consumption, increases the life span of the used sources and fulfills the energy demand that affects the autonomy of the electric vehicle (EV). A novel hybrid control strategy based on the interconnection and damping assignment passivity-based control (IDA-PBC) technique is proposed while considering the battery State of Charge (SOC) and the hydrogen level operating conditions. PBC is a very powerful nonlinear technique, which uses important system information such as the system energy information. The Artificial Neural Network (ANN) is used for defining the appropriate references for the proposed controller to properly share the load power demand among the sources. Consequently, the proposed nonlinear control enables dispatching the requested power/energy among sources under source limitations. The real time experimental results demonstrate the enhanced efficiency of the hybridized ANN together with the IDA-PBC control. This work proposes a complete study and solution, from modeling, control, stability proof, simulation to practical validation. New constraints are emerging in anticipation of the real-time use of FC hybrid systems. These constraints and objectives are mainly related to the limitations of energy resources and the minimization of hydrogen consumption. The supervision of hydrogen level and battery SOC resources are proposed by using ANN, which gives the battery current and/or SC set point to the control loops. Experimentation works have validated the feasibility of this optimization technique.
   
     
 
       

Author Related Publications

  • Hytham Saad Mohamed Ramadan, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022 More
  • Hytham Saad Mohamed Ramadan, "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Efficient metaheuristic utopia-based multi-objective solutions of optimal battery-mix storage for microgrids", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Optimal reconfiguration for vulnerable radial smart grids under uncertain operating conditions", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Robust approach based chimp optimization algorithm for minimizing power loss of electrical distribution networks via allocating distributed generators", ELSEVIER, 2021 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Mohammed Abdelhamied Abdelnaeem , "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet