Health-aware frequency separation method for online energy management of fuel cell hybrid vehicle considering efficient urban utilization

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages: 16030-16047
Authors:
Journal: International Journal of Hydrogen Energy ELSEVIER Volume: 46
Keywords : Health-aware frequency separation method , online energy    
Abstract:
Frequency separation methods (FSMs) are frequently used to implement energy management of fuel cell hybrid vehicle (FCHV), due to their flexible online implementation and resilience under diverse driving environments. However, predefined static rules of FSM generally result in inefficient operation of FCHV and rapid deterioration of sources. Additionally, allocated limits of storage devices are likely to be violated in the conventional FSM. With this inspiration, the paper proposes a novel health-aware FSM (HFSM) to appropriately distribute the traction power among energy sources of FCHV with efficient urban utilization. The power separation rules of HFSM are tuned in an instantaneous manner to concurrently realize the fuel economy, lifespan extension and allocated storage limits. Within HFSM, an online optimizer is formulated, which introduces the concept of soft/hard limitations and rationalized cost structure to adequately quantify the fuel consumption and health degradation of fuel cell. An adaptive droop adjustment is then integrated with HFSM to consistently realize the storage limitations. Compared to conventional FSM, considerable improvements in the fuel economy and fuel cell service life are observed over an extended iterative loop of standard urban driving cycles.
   
     
 
       

Author Related Publications

  • Hytham Saad Mohamed Ramadan, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022 More
  • Hytham Saad Mohamed Ramadan, "Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Efficient metaheuristic utopia-based multi-objective solutions of optimal battery-mix storage for microgrids", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Optimal reconfiguration for vulnerable radial smart grids under uncertain operating conditions", ELSEVIER, 2021 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Mohammed Abdelhamied Abdelnaeem , "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet