A Local Search-Based Generalized Normal Distribution Algorithm for Permutation Flow Shop Scheduling

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Applied Sciences Multidisciplinary Digital Publishing Institute Volume: 11
Keywords : , Local Search-Based Generalized Normal Distribution Algorithm    
Abstract:
This paper studies the generalized normal distribution algorithm (GNDO) performance for tackling the permutation flow shop scheduling problem (PFSSP). Because PFSSP is a discrete problem and GNDO generates continuous values, the largest ranked value rule is used to convert those continuous values into discrete ones to make GNDO applicable for solving this discrete problem. Additionally, the discrete GNDO is effectively integrated with a local search strategy to improve the quality of the best-so-far solution in an abbreviated version of HGNDO. More than that, a new improvement using the swap mutation operator applied on the best-so-far solution to avoid being stuck into local optima by accelerating the convergence speed is effectively applied to HGNDO to propose a new version, namely a hybrid-improved GNDO (HIGNDO). Last but not least, the local search strategy is improved using the scramble mutation operator to utilize each trial as ideally as possible for reaching better outcomes. This improved local search strategy is integrated with IGNDO to produce a new strong algorithm abbreviated as IHGNDO. Those proposed algorithms are extensively compared with a number of well-established optimization algorithms using various statistical analyses to estimate the optimal makespan for 41 well-known instances in a reasonable time. The findings show the benefits and speedup of both IHGNDO and HIGNDO over all the compared algorithms, in addition to HGNDO.
   
     
 
       

Author Related Publications

    Department Related Publications

    • Saber Mohamed, "A surrogate-assisted differential evolution algorithm with dynamic parameters selection for solving expensive optimization problems", IEEE, 2014 More
    • Saber Mohamed, "Differential Evolution Combined with Constraint Consensus for Constrained Optimization", IEEE, 2011 More
    • mahmoud mohamed ismail ali, "AN EFFICIENT Hybrid Swarm Intelligence Technique for Solving Integer Programming", International Journal of Computers & Technology, 2013 More
    • mahmoud mohamed ismail ali, "A Hybrid Swarm Intelligence Technique for Solving Integer Multi-objective Problems", international journal of computer applications, 2014 More
    • mahmoud mohamed ismail ali, "An Improved Chaotic Flower Pollination Algorithm for Solving Large Integer Programming Problems", International Journal of Digital Content Technology and its Applications, 2014 More
    Tweet