A Local Search-Based Generalized Normal Distribution Algorithm for Permutation Flow Shop Scheduling

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Applied Sciences Multidisciplinary Digital Publishing Institute Volume: 11
Keywords : , Local Search-Based Generalized Normal Distribution Algorithm    
Abstract:
This paper studies the generalized normal distribution algorithm (GNDO) performance for tackling the permutation flow shop scheduling problem (PFSSP). Because PFSSP is a discrete problem and GNDO generates continuous values, the largest ranked value rule is used to convert those continuous values into discrete ones to make GNDO applicable for solving this discrete problem. Additionally, the discrete GNDO is effectively integrated with a local search strategy to improve the quality of the best-so-far solution in an abbreviated version of HGNDO. More than that, a new improvement using the swap mutation operator applied on the best-so-far solution to avoid being stuck into local optima by accelerating the convergence speed is effectively applied to HGNDO to propose a new version, namely a hybrid-improved GNDO (HIGNDO). Last but not least, the local search strategy is improved using the scramble mutation operator to utilize each trial as ideally as possible for reaching better outcomes. This improved local search strategy is integrated with IGNDO to produce a new strong algorithm abbreviated as IHGNDO. Those proposed algorithms are extensively compared with a number of well-established optimization algorithms using various statistical analyses to estimate the optimal makespan for 41 well-known instances in a reasonable time. The findings show the benefits and speedup of both IHGNDO and HIGNDO over all the compared algorithms, in addition to HGNDO.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet