An Improved Jellyfish Algorithm for Multilevel Thresholding of Magnetic Resonance Brain Image Segmentations

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages: 2961 - 2977
Authors:
Journal: CMC-COMPUTERS MATERIALS & CONTINUA TECH SCIENCE PRESS Volume: 68
Keywords : , Improved Jellyfish Algorithm , Multilevel Thresholding , Magnetic    
Abstract:
Image segmentation is vital when analyzing medical images, espe-cially magnetic resonance (MR) images of the brain. Recently, several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation; however, the algorithms become trapped in local minima and have low convergence speeds, particularly as the number of threshold levels increases. Consequently, in this paper, we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm (JSA) (an optimizer). We modify the JSA to prevent descents into local minima, and we accelerate convergence toward optimal solutions. The improvement is achieved by applying two novel strategies: Ranking -based updating and an adaptive method. Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions. We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution; we allow a small amount of exploration to avoid descents into local minima. The two strategies are integrated with the JSA to produce an improved JSA (IJSA) that optimally thresholds brain MR images. To compare the performances of the IJSA and JSA, seven brain MR images were segmented at threshold levels of 3, 4, 5, 6, 7, 8, 10, 15, 20, 25, and 30. IJSA was compared with several other recent image segmentation algorithms, including the improved and standard marine predator algorithms, the modi-fied salp and standard salp swarm algorithms, the equilibrium optimizer, and the standard JSA in terms of fitness, the Structured Similarity Index Metric (SSIM), the peak signal-to-noise ratio (PSNR), the standard deviation (SD), and the Features Similarity Index Metric (FSIM). The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM, the PSNR, the objective values, and the SD; in terms of the SSIM, IJSA was competitive with the others.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet