IEGA: An improved elitism-based genetic algorithm for task scheduling problem in fog computing

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages: 4592-4631
Authors:
Journal: International Journal of Intelligent Systems WILEY Volume: 36
Keywords : IEGA: , improved elitism-based genetic algorithm , task    
Abstract:
Modern information technology, such as the internet of things (IoT) provides a real-time experience into how a system is performing and has been used in diversified areas spanning from machines, supply chain, and logistics to smart cities. IoT captures the changes in surrounding environments based on collections of distributed sensors and then sends the data to a fog computing (FC) layer for analysis and subsequent response. The speed of decision in such a process relies on there being minimal delay, which requires efficient distribution of tasks among the fog nodes. Since the utility of FC relies on the efficiency of this task scheduling task, improvements are always being sought in the speed of response. Here, we suggest an improved elitism genetic algorithm (IEGA) for overcoming the task scheduling problem for FC to enhance the quality of services to users of IoT devices. The improvements offered by IEGA stem from two main phases: first, the mutation rate and crossover rate are manipulated to help the algorithms in exploring most of the combinations that may form the near-optimal permutation; and a second phase mutates a number of solutions based on a certain probability to avoid becoming trapped in local minima and to find a better solution. IEGA is compared with five recent robust optimization algorithms in addition to EGA in terms of makespan, flow time, fitness function, carbon dioxide emission rate, and energy consumption. IEGA is shown to be superior to all other algorithms in all respects.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet