An Efficient Marine Predators Algorithm for Solving Multi-Objective Optimization Problems: Analysis and Validations

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages: 42817-42844
Authors:
Journal: IEEE Access IEEE Volume: 9
Keywords : , Efficient Marine Predators Algorithm , Solving Multi-Objective    
Abstract:
Recently, a new strong optimization algorithm called marine predators algorithm (MPA) has been proposed for tackling the single-objective optimization problems and could dramatically fulfill good outcomes in comparison to the other compared algorithms. Those dramatic outcomes, in addition to our recently-proposed strategies for helping meta-heuristic algorithms in fulfilling better outcomes for the multi-objective optimization problems, motivate us to make a comprehensive study to see the performance of MPA alone and with those strategies for those optimization problems. Specifically, This paper proposes four variants of the marine predators' algorithm (MPA) for solving multi-objective optimization problems. The first version, called the multi-objective marine predators' algorithm (MMPA) is based on the behavior of marine predators in finding their prey. In the second version, a novel strategy called dominance strategy-based exploration-exploitation (DSEE) recently-proposed is effectively incorporated with MMPA to relate the exploration and exploitation phase of MPA to the dominance of the solutions-this version is called M-MMPA. DSEE counts the number of dominated solutions for each solution-the solutions with high dominance undergo an exploitation phase; the others with small dominance undergo the exploration phase. The third version integrates M-MMPA with a novel strategy called Gaussian-based mutation, which uses the Gaussian distribution-based exploration and exploitation strategy to search for the optimal solution. The fourth version uses the Nelder-Mead simplex method with M-MMPA (M-MMPA-NMM) at the start of the optimization process to construct a front of the non-dominated solutions that will help M-MMPA to find more good solutions. The effectiveness of the four versions is validated on a large set of theoretical and practical problems. For all the cases, the proposed algorithm and its variants are shown to be superior to a number of well-known multi-objective optimization algorithms.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet