Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
A Binary Equilibrium Optimization Algorithm for 0–1 Knapsack Problems
Faculty
Computer Science
Year:
2021
Type of Publication:
ZU Hosted
Pages:
Authors:
Staff Zu Site
Abstract In Staff Site
Journal:
Computers & Industrial Engineering Pergamon
Volume:
151
Keywords :
, Binary Equilibrium Optimization Algorithm , , Knapsack Problems
Abstract:
In this paper, a binary version of equilibrium optimization (BEO) is proposed for the tackling 0–1 knapsack problem characterized as a discrete problem. Because the standard equilibrium optimizer (EO) has been proposed for solving continuous optimization problems, a discrete variant is required to solve binary problems. Hence, eight transfer functions including V-Shaped and S-Shaped are employed to convert continuous EO to Binary EO (BEO). Among those transfer functions, this study demonstrates that V-Shaped V3 is the best one. It is also observed that the sigmoid S3 transfer function can be more beneficial than V3 for improving the performance of other algorithms employed in this paper. We conclude that the performance of any binary algorithm relies on the good choice of the transfer function. In addition, we use the penalty function to sift the infeasible solution from the solutions of the problem and apply a repair algorithm (RA) for converting them to feasible solutions. The performance of the proposed algorithm is evaluated on three benchmark datasets with 63 instances of small-, medium-, and large-scale and compared with a number of the other algorithm proposed for solving 0–1 knapsack under different statistical analyses. The experimental results demonstrate that the BEOV3 algorithm is superior on all the small-, medium-scale case studies. Regarding the large-scale test cases, the proposed method achieves the optimal value for 13 out of 18 instances.2
Author Related Publications
Department Related Publications
Mohammed Abdel Basset Metwally Attia, "An Improved Most Valuable Player Algorithm with Twice Training Mechanism", Springer, 2018
More
Saber Mohamed, "Evolving the Parameters of Differential Evolution using Evolutionary Algorithms", Springer, 2014
More
Saber Mohamed, "A Comparative Study of Different Variants of Genetic Algorithms for Constrained Optimization", Springer, 2010
More
Saber Mohamed, "Differential Evolution with Multiple Strategies for Solving CEC2011 Real-world Numerical Optimization Problems", IEEE, 2011
More
Mohammed Abdel Basset Metwally Attia, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف