STEADY-STATE MODELLING OF PEM FUEL CELLS USING GRADIENT-BASED OPTIMIZER

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages: 520-527
Authors:
Journal: DYNA DYNA - Ingeniería e Industri Volume: 96
Keywords : STEADY-STATE MODELLING , , FUEL CELLS USING GRADIENT-BASED    
Abstract:
The accuracy of fuel cell (FC) models is important for the further numerical simulations and analysis at several conditions. The electrical (I-V) characteristic of the polymer exchange membrane fuel cells (PEMFCs) has high degree of nonlinearity comprising uncertain seven parameters as they aren’t given in fabricator’s datasheets. These seven parameters need to be obtained to have the PEMFC model in order. This research addresses an up-to-date application of the gradient-based optimizer (GBO) to generate the best estimated values of such uncertain parameters. The estimation of these uncertain parameters is adapted as optimization problem having a cost function (CF) subjects to set of self-constrained limits. Three test cases of widely used PEMFCs units; namely, SR-12, 250-W module and NedStack PS6 to appraise the performance of the GBO are demonstrated and analyzed. The best values of the CF are 0.000142, 0.33598, and 2.10025 V2 for SR-12, 250-W module and NedStack PS6; respectively. Furthermore, the assessment of the GBO-based model is made by comparing its obtained results with the experiential results of these typical PEMFCs plus comparisons to other methods. At a due stage, many scenarios as a result of operating variations in regard to inlet regulation pressures and unit temperatures are performed. The copped reported results of the studied scenarios indicate the effectiveness of the GBO in establishing an accurate PEMFC model.
   
     
 
       

Author Related Publications

  • Attia Abdelaziz Hussien Ali, "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
  • Attia Abdelaziz Hussien Ali, "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models", Multidisciplinary Digital Publishing Institute, 2021 More
  • Attia Abdelaziz Hussien Ali, "Parameters identification of PV triple-diode model using improved generalized normal distribution algorithm", Multidisciplinary Digital Publishing Institute, 2021 More
  • Attia Abdelaziz Hussien Ali, "Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: A comprehensive analysis", Elsevier, 2021 More
  • Attia Abdelaziz Hussien Ali, "Model parameters extraction of solid oxide fuel cells based on semi-empirical and memory-based chameleon swarm algorithm", Wiley, 2021 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Attia Abdelaziz Hussien Ali, "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet