A novel whale optimization algorithm integrated with Nelder–Mead simplex for multi-objective optimization problems

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Knowledge-Based Systems ELSEVIER Volume:
Keywords : , novel whale optimization algorithm integrated with    
Abstract:
Recently, several meta-heuristics and evolutionary algorithms have been proposed for tackling optimization problems. Such methods tend to suffer from degraded performance when solving multi-objective optimization problems due to addressing the conflicting goals of finding accurate estimation of Pareto optimal solutions and increasing their distribution across all objectives. In this paper, the Whale Optimization Algorithm (WOA) is improved and extended to solve such multi-objective optimization problems with the purpose of alleviating these drawbacks. The improvements include: (1) modifying the distance control factor of the standard WOA to contain values generated dynamically instead of a fixed one, (2) the trade-off between moving toward the opposite of the best solution and its original values based on a certain probability to prevent stuck into local minima, and (3) accelerating the convergence and coverage using Nelder–Mead method and the Pareto Archived Evolution Strategy (PAES). The proposed algorithm is tested on three benchmark multi-objective test functions (DTLZ, CEC 2009, and GLT), including 25 test functions, to verify its effectiveness by comparing with nine robust multi-objective algorithms. The experiments demonstrate the superiority of the proposed algorithm compared to some of the existing multi-objective algorithms in the literature.
   
     
 
       

Author Related Publications

    Department Related Publications

    • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
    • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
    • Saber Mohamed, "Training and Testing a Self-Adaptive Multi-Operator Evolutionary Algorithm for Constrained Optimization", ELSEVEIR, 2015 More
    • Saber Mohamed, "An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems", IEEE, 2013 More
    • Saber Mohamed, "Differential Evolution with Dynamic Parameters Selection for Optimization Problems", IEEE, 2014 More
    Tweet