Energy-aware marine predators algorithm for task scheduling in IoT-based fog computing applications

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages: 5068 - 5076
Authors:
Journal: IEEE Transactions on Industrial Informatics IEEE Volume: 17
Keywords : Energy-aware marine predators algorithm , task scheduling    
Abstract:
To improve the quality of service (QoS) needed by several applications areas, the Internet of Things (IoT) tasks are offloaded into the fog computing instead of the cloud. However, the availability of ongoing energy heads for fog computing servers is one of the constraints for IoT applications because transmitting the huge quantity of the data generated using IoT devices will produce network bandwidth overhead and slow down the responsive time of the statements analyzed. In this article, an energy-aware model basis on the marine predators algorithm (MPA) is proposed for tackling the task scheduling in fog computing (TSFC) to improve the QoSs required by users. In addition to the standard MPA, we proposed the other two versions. The first version is called modified MPA (MMPA), which will modify MPA to improve their exploitation capability by using the last updated positions instead of the last best one. The second one will improve MMPA by the ranking strategy based reinitialization and mutation toward the best, in addition to reinitializing, the half population randomly after a predefined number of iterations to get rid of local optima and mutated the last half toward the best-so-far solution. Accordingly, MPA is proposed to solve the continuous one, whereas the TSFC is considered a discrete one, so the normalization and scaling phase will be used to convert the standard MPA into a discrete one. The three versions are proposed with some other metaheuristic algorithms and genetic algorithms based on various performance metrics such as energy consumption, makespan, flow time, and carbon dioxide emission rate. The improved MMPA could outperform all the other algorithms and the other two versions.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet