Exploiting the Biosynthetic Potency of Taxol from Fungal Endophytes of Conifers Plants; Genome Mining and Metabolic Manipulation

Faculty Science Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Molecules Molecules Volume:
Keywords : Exploiting , Biosynthetic Potency , Taxol from Fungal Endophytes    
Abstract:
Endophytic fungi have been considered as a repertoire for bioactive secondary metabolites with potential application in medicine, agriculture and food industry. The biosynthetic pathways by fungal endophytes raise the argument of acquisition of these machineries of such complex metabolites from the plant host. Diterpenoids “Taxol” is the most effective anticancer drug with highest annual sale, since its discovery in 1970 from the Pacific yew tree, Taxus brevifolia. However, the lower yield of Taxol from this natural source (bark of T. brevifolia), availability and vulnerability of this plant to unpredicted fluctuation with the ecological and environmental conditions are the challenges. Endophytic fungi from Taxus spp. opened a new avenue for industrial Taxol production due to their fast growth, cost effectiveness, independence on climatic changes, feasibility of genetic manipulation. However, the anticipation of endophytic fungi for industrial Taxol production has been challenged by the loss of its productivity, due to the metabolic reprograming of cells, downregulating the expression of its encoding genes with subculturing and storage. Thus, the objectives of this review were to (1) Nominate the endophytic fungal isolates with the Taxol producing potency from Taxaceae and Podocarpaceae; (2) Emphasize the different approaches such as molecular manipulation, cultural optimization, co-cultivation for enhancing the Taxol productivities; (3) Accentuate the genome mining of the rate-limiting enzymes for rapid screening the Taxol biosynthetic machinery; (4) Triggering the silenced rate-limiting genes and transcriptional factors to activates the biosynthetic gene cluster of Taxol
   
     
 
       

Author Related Publications

  • Nabila ZineElAbidine Elsyd, "Bee venom ameliorates cardiac dysfunction in diabetic hyperlipidemic rats", Experimental Biology and Medicine, 2021 More
  • Nabila ZineElAbidine Elsyd, "Synthesis and characterization of new 1,2,4-triazole anticancer scaffold derivatives: In Vitro study", Egyptian Journal of Chemistry, 2021 More
  • Nabila ZineElAbidine Elsyd, "Quercetin Extracted from Broccoli Attenuates the Renewal of Hepatic Cells via Downregulation of TGFβ-1 and Arresting of HSCs Activation in Mice", Biointerface Research in Applied Chemistry, 2021 More
  • Nabila ZineElAbidine Elsyd, "Bee venom attenuates degenerative effects of diabetes associated with hyperlipidemia in rats.", Biochemistry Letters, 2021 More
  • Nabila ZineElAbidine Elsyd, "EFFECT OF CORIADRUM SATIVUM ON EXPERIMENTALLY IDUCED HEPATOTOXICITY OF CARBON TETRACHLORIDE IN RATS", Biochemistry Letters, 2014 More

Department Related Publications

  • Mohamed Ali Ibrahim Mohamed ally, "Hepatocyte derived from Rat Bone Marrow Mesenchymal Stem Cells", indian journal of applied research, 2013 More
  • Nabila ZineElAbidine Elsyd, "Bee venom ameliorates cardiac dysfunction in diabetic hyperlipidemic rats", Experimental Biology and Medicine, 2021 More
  • Nabila ZineElAbidine Elsyd, "Synthesis and characterization of new 1,2,4-triazole anticancer scaffold derivatives: In Vitro study", Egyptian Journal of Chemistry, 2021 More
  • Nabila ZineElAbidine Elsyd, "Quercetin Extracted from Broccoli Attenuates the Renewal of Hepatic Cells via Downregulation of TGFβ-1 and Arresting of HSCs Activation in Mice", Biointerface Research in Applied Chemistry, 2021 More
  • Nabila ZineElAbidine Elsyd, "Bee venom attenuates degenerative effects of diabetes associated with hyperlipidemia in rats.", Biochemistry Letters, 2021 More
Tweet