Optimal techno-economic design of hybrid PV/wind system comprising battery energy storage: Case study for a remote area

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Energy Conversion and management Elsevier Volume:
Keywords : Optimal techno-economic design , hybrid PV/wind system    
Abstract:
Due to the sustainability and emission-free property of hybrid renewable energy sources (RESs), they became challenging alternative sources to conventional energy production facilities. However, cost of energy (COE) and the intermittent nature of RESs are two adverse factors complicating the problem of system appropriate sizing. This study develops a generalized mathematical model to find the optimal PV/wind/battery system sizes for remote areas. The proposed methodology is applied on a remote area in Egypt-Sinai called Ras-Shaitan. The purpose of the optimization process is to meet the load demand while minimizing the COE under different loss of power supply probability (LPSP). The grey wolf optimizer (GWO) is employed to decide the number of units among photovoltaic, wind and battery banks to achieve the best minimum objective value. To validate the solution quality generated by the GWO, the widely used HOMER software, the particle swarm optimizer (PSO) and genetic algorithm (GA) as a well-known meta-heuristic algorithms, are applied to the same and their results are compared with those obtained by the GWO. Further validations are made, in which, a new algorithm called wild horse optimizer (WHO) is also applied as a new algorithm and its results compared to aforementioned methods. Moreover, different solutions are offered according to the LPSP. The optimal system offered by HOMER has COE of 0.118 $/kWh, while GWO resulted in a save of about 17% of the COE. The GWO has a better convergence trend and best statistics measures than the PSO.
   
     
 
       

Author Related Publications

  • Attia Abdelaziz Hussien Ali, "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
  • Attia Abdelaziz Hussien Ali, "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models", Multidisciplinary Digital Publishing Institute, 2021 More
  • Attia Abdelaziz Hussien Ali, "Parameters identification of PV triple-diode model using improved generalized normal distribution algorithm", Multidisciplinary Digital Publishing Institute, 2021 More
  • Attia Abdelaziz Hussien Ali, "Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: A comprehensive analysis", Elsevier, 2021 More
  • Attia Abdelaziz Hussien Ali, "Model parameters extraction of solid oxide fuel cells based on semi-empirical and memory-based chameleon swarm algorithm", Wiley, 2021 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Attia Abdelaziz Hussien Ali, "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet