Xylitol Inhibits Growth and Blocks Virulence in Serratia marcescens

Faculty Pharmacy Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Microorganisms MDPI Volume:
Keywords : Xylitol Inhibits Growth , Blocks Virulence , Serratia    
Abstract:
Serratia marcescens is an opportunistic nosocomial pathogen and causes wound and burn infections. It shows high resistance to antibiotics and its pathogenicity is mediated by an arsenal of virulence factors. Another therapeutic option to such infections is targeting quorum sensing (QS), which controls the expression of different S. marcescens virulence factors. Prevention of QS can deprive S. marcescens from its bacterial virulence without applying stress on the bacterial growth and facilitates the eradication of the bacteria by immunity. The objective of the current study is to explore the antimicrobial and antivirulence activities of xylitol against S. marcescens. Xylitol could inhibit the growth of S. marcescens. Sub-inhibitory concentrations of xylitol could inhibit biofilm formation, reduce prodigiosin production, and completely block protease activity. Moreover, xylitol decreased swimming motility, swarming motility and increased the sensitivity to hydrogen peroxide. The expression of rsmA, pigP, flhC, flhD fimA, fimC, shlA bsmB, and rssB genes that regulate virulence factor production was significantly downregulated by xylitol. In silico study showed that xylitol could bind with the SmaR receptor by hydrophobic interaction and hydrogen bonding, and interfere with the binding of the natural ligand with SmaR receptor. An in vivo mice survival test confirmed the ability of xylitol to protect mice against the virulence of S. marcescens. In conclusion, xylitol is a growth and virulence inhibitor in S. marcescens and can be employed for the treatment of S. marcescens wound and burn infections. View Full-Text
   
     
 
       

Author Related Publications

  • Tarek Mohamed Salah Rashad, "Uracil as a Zn-Binding Bioisostere of the Allergic Benzenesulfonamide in the Design of Quinoline–Uracil Hybrids as Anticancer Carbonic Anhydrase Inhibitors", mdpi, 2022 More
  • Tarek Mohamed Salah Rashad, "New Multi-Targeted Antiproliferative Agents: Design and Synthesis of IC261-Based Oxindoles as Potential Tubulin, CK1 and EGFR Inhibitors", mdpi, 2021 More
  • Tarek Mohamed Salah Rashad, "Novel chalcone/aryl carboximidamide hybrids as potent anti-inflammatory via inhibition of prostaglandin E2 and inducible NO synthase activities: design, synthesis, molecular docking studies and ADMET prediction", Taylor & Francis Group, 2021 More
  • Tarek Mohamed Salah Rashad, "Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition", ELSEVIER, 2021 More
  • Tarek Mohamed Salah Rashad, "Design, synthesis and pharmacological screening of novel renoprotective methionine-based peptidomimetics: Amelioration of cisplatin-induced nephrotoxicity", ELSEVIER, 2021 More

Department Related Publications

  • Mona Abdelmoniem Elsayed Mahmmoud , "The value of peritoneal lavage in peritonitis", لايوجد, 1900 More
  • Mona Abdelmoniem Elsayed Mahmmoud , "Chemoantibiotic _ resistance in enteropathogenic Escherichia Coli Locally ", لايوجد, 1900 More
  • Mona Abdelmoniem Elsayed Mahmmoud , "Identification of different Candidia species according to its fatty acids contents.", لايوجد, 1900 More
  • Mona Abdelmoniem Elsayed Mahmmoud , "The effects of various antimicrobial agents against Escherichia coli isolated from urine.", لايوجد, 1900 More
  • Mona Abdelmoniem Elsayed Mahmmoud , "Isolation and Characterization of cellulose from Streptomyces roseoflavus ", لايوجد, 1900 More
Tweet