Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Determining Extractive Summary for a Single Document Based on Collaborative Filtering Frequency Prediction and Mean Shift Clustering
Faculty
Computer Science
Year:
2019
Type of Publication:
ZU Hosted
Pages:
Authors:
Staff Zu Site
Abstract In Staff Site
Journal:
IAENG International Journal of Computer Science IAENG International Journal of Computer Science
Volume:
Keywords :
Determining Extractive Summary , , Single Document Based
Abstract:
This paper presents a new unsupervised algorithm for determining extractive summary for a single document using term frequency prediction, which is obtained from memory-based collaborative filtering (CF) approach, and Mean Shift Clustering algorithm. The new algorithm uses Term-Sentence Collaborative Filtering (TSCF) for predicting term frequency. These term frequencies are used in sentence ranking according to the presence percentage of each word/term in each sentence. TSCF computes term frequencies for either terms present or missing (sparse) in a sentence via collaborative filtering prediction algorithm. The new algorithm uses Mean Shift Clustering algorithm as a final framework to group sentences according to their ranks to get more coherent summaries. Experiments show the effect of using different weighting functions including: Term Frequency (TF), Term Frequency Inverse Document Frequency (TFIDF) and binary TF. In addition, they show the effect of using different distance metrics that support sparse matrices representations including: Cosine, Euclidean and Manhattan. Experiments also, show the effect of using L1 and L2 normalization. ROUGE is used as a fully automatic metric in text summarization on DUC2002 datasets. Results show ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-SU4 average recall, precision and f-measure scores, which show the effectiveness of the new algorithm. Results show that the proposed TSCF algorithm has promising results and outperforms related baseline techniques in many ROUGE scores.
Author Related Publications
Department Related Publications
Ahmed Salah Mohamed Mostafa, "A data parallel strategy for aligning multiple biological sequences on multi-core computers", Computers in Biology and Medicine, 2013
More
Doaa El-Shahat Barakat Mohammed, "Energy-aware whale optimization algorithm for real-time task scheduling in multiprocessor systems", Elsevier, 2020
More
Wael Said AbdelMageed Mohamed, "Proof of Credibility: A Blockchain Approach for Detecting and Blocking Fake News in Social Networks", Science and Information Organization, 2019
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف