Digital image processing for physical basis analysis of electrical failure forecasting in XLPE power cables based on field simulation using finite element method

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages: 12
Authors:
Journal: IET Generation, Transmission & Distribution Wiley Volume:
Keywords : Digital image processing , physical basis analysis    
Abstract:
In this research, digital image processing method (DIPM) is used as an innovative approach to predict precisely the shape of electrical tree (ET) in cross-linked polyethylene (XLPE) power cables in the presence of air voids based on the field calculation using finite-element method (FEM). With the help of DIPM, two case studies are held to detect the accurate parameters of either the first initiated major branch or the tips of the major branches of ET. A hyperbolic needle-to-plane simulation model is proposed to illustrate the ET inception and propagation stages. The non-uniform electric fields thatare accompanied with the electrical treeing phenomenon are calculated using FEM as one of the most effective numerical methods to deal with non-uniform shapes. The predicted shapes of ET initiation and growth are provided in an innovative manner with the implemented hybrid connection between FEM and DIPM for the two proposed case studies. Direction branching approach and deviation angle branching approach are provided in this work to predict the shape and the direction of ET branched voids. The validity of the proposed model is assessed with the help of available previous experimental and simulation data.
   
     
 
       

Author Related Publications

    Department Related Publications

    • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
    • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
    • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
    • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
    • Mohammed Abdelhamied Abdelnaeem , "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
    Tweet