Evolutionary Framework With Reinforcement Learning-Based Mutation Adaptation

Faculty Computer Science Year: 2020
Type of Publication: ZU Hosted Pages: 194045-194071
Authors:
Journal: IEEE Access IEEE xplorer Volume:
Keywords : Evolutionary Framework With Reinforcement Learning-Based Mutation    
Abstract:
Although several multi-operator and multi-method approaches for solving optimization problems have been proposed, their performances are not consistent for a wide range of optimization problems. Also, the task of ensuring the appropriate selection of algorithms and operators may be inefficient since their designs are undertaken mainly through trial and error. This research proposes an improved optimization framework that uses the benefits of multiple algorithms, namely, a multi-operator differential evolution algorithm and a co-variance matrix adaptation evolution strategy. In the former, reinforcement learning is used to automatically choose the best differential evolution operator. To judge the performance of the proposed framework, three benchmark sets of bound-constrained optimization problems (73 problems) with 10, 30 and 50 dimensions are solved. Further, the proposed algorithm has been tested by solving optimization problems with 100 dimensions taken from CEC2014 and CEC2017 benchmark problems. A real-world application data set has also been solved. Several experiments are designed to analyze the effects of different components of the proposed framework, with the best variant compared with a number of state-of-the-art algorithms. The experimental results show that the proposed algorithm is able to outperform all the others considered.
   
     
 
       

Author Related Publications

  • Karam mohamed goda, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More
  • Karam mohamed goda, "BSMA: A novel metaheuristic algorithm for multi-dimensional knapsack problems: Method and comprehensive analysis", Pergamon, 2021 More
  • Karam mohamed goda, "An Improved Binary Grey-Wolf Optimizer With Simulated Annealing for Feature Selection", IEEE, 2021 More
  • Karam mohamed goda, "Evolutionary algorithm-based convolutional neural network for predicting heart diseases", Elsevier, 2021 More
  • Karam mohamed goda, "An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models", Elsevier, 2021 More

Department Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Saber Mohamed, "Training and Testing a Self-Adaptive Multi-Operator Evolutionary Algorithm for Constrained Optimization", ELSEVEIR, 2015 More
  • Saber Mohamed, "An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems", IEEE, 2013 More
  • Saber Mohamed, "Differential Evolution with Dynamic Parameters Selection for Optimization Problems", IEEE, 2014 More
Tweet