Predicting Wins, Losses and Attributes’ Sensitivities in the Soccer World Cup 2018 Using Neural Network Analysis

Faculty Physical Education for Boys Year: 2020
Type of Publication: ZU Hosted Pages: 13
Authors:
Journal: Sensors MDPI Volume: 11
Keywords : Predicting Wins, Losses , Attributes’ Sensitivities , , Soccer    
Abstract:
Predicting the results of soccer competitions and the contributions of match attributes, in particular, has gained popularity in recent years. Big data processing obtained from different sensors, cameras and analysis systems needs modern tools that can provide a deep understanding of the relationship between this huge amount of data produced by sensors and cameras, both linear and non-linear data. Using data mining tools does not appear sufficient to provide a deep understanding of the relationship between the match attributes and results and how to predict or optimize the results based upon performance variables. This study aimed to suggest a different approach to predict wins, losses and attributes’ sensitivities which enables the prediction of match results based on the most sensitive attributes that affect it as a second step. A radial basis function neural network model has successfully weighted the effectiveness of all match attributes and classified the team results into the target groups as a win or loss. The neural network model’s output demonstrated a correct percentage of win and loss of 83.3% and 72.7% respectively, with a low Root Mean Square training error of 2.9% and testing error of 0.37%. Out of 75 match attributes, 19 were identified as powerful predictors of success. The most powerful respectively were: the Total Team Medium Pass Attempted (MBA) 100%; the Distance Covered Team Average in zone 3 (15–20 km/h; Zone3_TA) 99%; the Team Average ball delivery into the attacking third of the field (TA_DAT) 80.9%; the Total Team Covered Distance without Ball Possession (Not in_Poss_TT) 76.8%; and the Average Distance Covered by Team (Game TA) 75.1%. Therefore, the novel radial based function neural network model can be employed by sports scientists to adapt training, tactics and opposition analysis to improve performance
   
     
 
       

Author Related Publications

  • Ibrahim Hamed Ibrahim Hassan, "The Effect of Core Stability Training on Dynamic Balance and Smash Stroke Performance in Badminton Players", Science Publishing Group, 2017 More
  • Ibrahim Hamed Ibrahim Hassan, "A comparative study between talented young Greek and German handball players in some physical and anthropometric characteristics", Biology of Sport, 2011 More
  • Ibrahim Hamed Ibrahim Hassan, "Covered Distance and Activity Profile of African Professional Soccer Players According to the Playing Position: Reports From Soccer World Cup 2014", TGFU, 2016 More
  • Ibrahim Hamed Ibrahim Hassan, "تأثير برنامج تدريبى لتطوير فعالية أداء الضربة الترجيحية من خط الـ 23م فى هوكى الميدان", كلية التربية الرياضية للبنين جامعة الاسكندرية, 2015 More
  • Ibrahim Hamed Ibrahim Hassan, "الخصائص الكينماتيكية للطرف العلوى وعلاقتها بسرعة الكرة أثناء أداء مهارة الإرسال العالى بوجه المضرب الأمامي فى الإسكواش", كلية التربية الرياضية للبنات بالجزيرة, 2016 More

Department Related Publications

  • Tarek Ezz Eldien Ibrahim Kelany, "تأثير التدريب الطولى على رفع مستوى الاداء المهارى لدى ناشىء هوكى الميدان", كلية التربية الرياضية للبنين, 2014 More
  • Ehab Saber Ismaiel Ismail, "The effectiveness of visual training on some attacking skills to youth squash", zagazig, 2009 More
  • Habib Reda Habib Ibrahiem, "تأثير استخدام الدوائر المغلقة والدوائر المفتوحة على تعلم بعض المهارات الأساسية في رياضة تنس الطاولة", كلية التربية الرياضية بالمنوفية, 2011 More
  • Habib Reda Habib Ibrahiem, "تأثير تدريبـات المقاومـة البالستية لتنمية القدرة العضلية على سرعة أداء اللعب الفردى لدى ناشئى كرة السرعة", كلية التربية الرياضية بالجزيرة, 2012 More
  • Habib Reda Habib Ibrahiem, "كينماتيكية الضربة اللولبية الخلفية وعلاقتها بسرعة الكرة في تنس الطاولة", كلية التربية الرياضية بنين بالزقازيق, 2013 More
Tweet