An improved Henry gas solubility optimization algorithm for task scheduling in cloud computing

Faculty Science Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Artificial Intelligence Review Springer Volume:
Keywords : , improved Henry , solubility optimization algorithm , task    
Abstract:
In cloud computing, task scheduling plays a major role and the efficient schedule of tasks can increase the cloud system efficiency. To successfully meet the dynamic requirements of end-users’ applications, advanced scheduling techniques should be in place to ensure optimal mapping of tasks to cloud resources. In this paper, a modified Henry gas solubility optimization (HGSO) is presented which is based on the whale optimization algorithm (WOA) and a comprehensive opposition-based learning (COBL) for optimum task scheduling. The proposed method is named HGSWC. In the proposed HGSWC, WOA is utilized as a local search procedure in order to improve the quality of solutions, whereas COBL is employed to improve the worst solutions by computing their opposite solutions and then selecting the best among them. HGSWC is validated on a set of thirty-six optimization benchmark functions, and it is contrasted with conventional HGSO and WOA. The proposed HGSWC has been proved to perform better than the comparison algorithms. Moreover, the performance of HGSWC has also been tested on a set of synthetic and real workloads including fifteen different task scheduling problems. The results obtained through simulation experiments demonstrate that HGSWC finds near optimal solutions with no computational overhead as well as outperforms six well-known metaheuristic algorithms.
   
     
 
       

Author Related Publications

  • Ibrahim Abdelhameed Attiya Ahmed, "Cloud Computing Technology: Promises and Concerns", Foundation of Computer Science (FCS), NY, USA, 2017 More
  • Ibrahim Abdelhameed Attiya Ahmed, "TCSA: A dynamic job scheduling algorithm for computational grids", IEEE, 2016 More
  • Ibrahim Abdelhameed Attiya Ahmed, "A Simplified Particle Swarm Optimization for Job Scheduling in Cloud Computing", Foundation of Computer Science (FCS), NY, USA, 2017 More
  • Ibrahim Abdelhameed Attiya Ahmed, "D-Choices Scheduling: A Randomized Load Balancing Algorithm for Scheduling in the Cloud", American Scientific Publishers, 2017 More
  • Ibrahim Abdelhameed Attiya Ahmed, "Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments", Elsevier B.V, 2021 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
  • Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014 More
  • Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012 More
Tweet