An improved runner-root algorithm for solving feature selection problems based on rough sets and neighborhood rough sets

Faculty Science Year: 2019
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Applied Soft Computing Journal Elseveir Volume:
Keywords : , improved runner-root algorithm , solving feature selection problems    
Abstract:
Solving the feature selection problem is considered an important issue when addressing data from real applications that contain a large number of features. However, not all of these features are important; therefore, the redundant features must be removed because they affect the accuracy of the data representation and introduce time complexity into the analysis of these data. For these reasons, the feature selection problem is considered an NP-complete nonlinearly constrained optimization problem. The rough set (RS) and neighborhood rough set (NRS) are the most powerful methods used to solve the feature selection problem; however, both approaches suffer from high time complexity. To avoid these limitations, we combined the RS and NRS with a new metaheuristic algorithm called the runner-root algorithm (RRA). The spirit of the RRA originated from real-life plants called running plants, which have roots and runners that spread the plants in search of minerals and water resources through their root and runner development. To validate the proposed algorithm, several UCI Machine Learning Repository datasets are used to compute the performance of our algorithm employing two effective classifiers, the random forest and the K-nearest neighbor, in addition to some other measures for the performance evaluation. The experimental results illustrate that the proposed algorithm is superior to the state-of-the-art metaheuristic algorithms in terms of the performance measures. Additionally, the NRS increases the performance of the proposed method more than the RS as an objective function.
   
     
 
       

Author Related Publications

  • Rehab Aly Ibrahim Muhammed, "Image Denoising using K-SVD Algorithm based on Gabor Wavelet Dictionary", International Journal of Computer Applications, 2012 More
  • Rehab Aly Ibrahim Muhammed, "Cooperative Meta-heuristic Algorithms for Global Optimization Problems", Elseveir, 2021 More
  • Rehab Aly Ibrahim Muhammed, "Efficient artificial intelligence forecasting models for COVID-19outbreak in Russia and Brazil", Elseveir, 2021 More
  • Rehab Aly Ibrahim Muhammed, "Automatic clustering method to segment COVID-19 CT images", ٍٍSpringer, 2021 More
  • Rehab Aly Ibrahim Muhammed, "Fractional Calculus-Based Slime Mould Algorithm for Feature Selection Using Rough Set", IEEE, 2021 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
  • Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014 More
  • Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012 More
Tweet