On postbuckling mode distortion and inversion of nanostructures due to surface roughness

Faculty Engineering Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: International Journal of Solids and Structures Elsevier Volume:
Keywords : , postbuckling mode distortion , inversion , nanostructures , , surface    
Abstract:
In this paper, we investigate the surface roughness-dependence of buckling of beam-nanostructures. A new variational formulation of buckling of Euler-Bernoulli rough beams is developed based on the Hamil- ton’s principle. The equation of motion of the beam is obtained with a coupling term that depends on the beam surface roughness. Exact solutions are derived for the buckling configurations and the pre-buckling and postbuckling vibrations of simply supported structures. The derived solutions are used to comprehen- sively explain influence of surface roughness on buckling characteristics of micro/nano-beams. We reveal that the buckling configurations and postbuckling mode shapes are distorted due to surface roughness. Thus, the beam with a rough surface may exhibit a localized buckling configuration where the buckling energy is confined over a small portion of the beam. In addition, the postbuckling mode shape of simply supported beams with rough surfaces is applied load-dependent. We report a value of the applied axial load at which the postbuckling mode shape is completely distorted, and the beam exhibits a mode shape that is identical to its buckling configuration but with a different amplitude. For the first time, we reveal a postbuckling mode inversion due to surface roughness. We demonstrate that the postbuckling mode shape starts to exhibit an inverted form of its original shape at high load values. The findings presented in this study highlight new insights into buckling characteristics of micro/nano-beams.
   
     
 
       

Author Related Publications

  • Samer Abdelrahman Mohamed Emam, "Exploiting the subharmonic parametric resonances of a buckled beam for vibratory energy harvesting", Springer دولي, 2018 More
  • Samer Abdelrahman Mohamed Emam, "Free vibration analysis of functionally graded size-dependent nanobeam", international, 2012 More
  • Samer Abdelrahman Mohamed Emam, "Static and stability analysis of nonlocal functionally graded nanobeams", i, 2013 More
  • Samer Abdelrahman Mohamed Emam, "Approximate analytical solutions for the nonlinear free vibrations of composite beams in buckling", international, 2013 More
  • Samer Abdelrahman Mohamed Emam, "Nonlinear response of buckled beams to 1:1 and 3:1 internal resonances", international, 2013 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet