Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach
Faculty
Engineering
Year:
2020
Type of Publication:
ZU Hosted
Pages:
1-16
Authors:
Mohamed Talaat Mohamed Mostafa
Staff Zu Site
Abstract In Staff Site
Journal:
Energy Elsevier
Volume:
190
Keywords :
, smart load management system based , , grasshopper
Abstract:
Load management represents one of the main constraints when considering smart grids. In addition, load management is a significant challenge for power system security operations. The smart techniques in load management endow the system with the ability to restore its normal or stable operation after being subjected to any disturbances. When the load exceeds the generation, the system stability is affected, which leads to cascade outages and shutdown of the major parts of the power system, causing the frequency decay effect. Fast load shedding (LS) is the best way to avoid cascading outages and power system blackouts. This paper proposes an innovative, accurate, reliable and fast under-frequency load shedding (UFLS) technique based on the grasshopper optimization algorithm (GOA). LS is considered in this research as a constrained optimization problem. The objective function is to minimize the amount of load shed while maximizing the lowest swing frequency at all stages. To validate the proposed GOA-based UFLS, a comparison with adaptive, particle swarm optimization (PSO) and genetic algorithm (GA) UFLS is carried out for different disturbances. Two different case study systems are considered to test the accuracy and reliability of the proposed algorithm: the IEEE 9-bus and 39-bus systems. The proposed GOA and PSO are coded using the MATLAB environment. Different operating cases involving outage of multiple generators and increasing load are implemented to validate the proposed GOA. The DigSilent power factory software is used as a platform for simulating the power system under study when subjected to different disturbance levels. The results verify the accuracy and reliability of GOA in minimizing the amount of load shed and maximizing the lowest swing frequency while satisfying the constraints. Moreover, GOA achieves a faster solution than PSO and GA.
Author Related Publications
Mohamed Talaat Mohamed Mostafa, "Discharge characteristics of gliding arc plasma reactor with argon/nitrogen", Journal of Advances in Physics, 2015
More
Mohamed Talaat Mohamed Mostafa, "Use of Finite Element Method for the Numerical Analysis of Eddy Current Brake", IEEE, 2014
More
Mohamed Talaat Mohamed Mostafa, "A University-Industry Link in Egypt Using the Social Networks", IEEE, 2014
More
Mohamed Talaat Mohamed Mostafa, "A Bi-level optimization strategy for electric vehicle retailers based on robust pricing and hybrid demand response", Elsevier, 2024
More
Mohamed Talaat Mohamed Mostafa, "New Experimental Study of an Injected Air Bubble Deformation in Dielectric Liquid under Applied High D.C. Voltage Using Photographic Recording", IEEE, 2003
More
Department Related Publications
Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021
More
Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024
More
Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021
More
Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021
More
Attia Abdelaziz Hussien Ali, "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف