New fractional-order Legendre-Fourier moments for pattern recognition applications

Faculty Computer Science Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Pattern Recognition ُElsevier Volume:
Keywords : , fractional-order Legendre-Fourier moments , pattern recognition applications    
Abstract:
Orthogonal moments enable computer-based systems to discriminate between similar objects. Mathematicians proved that the orthogonal polynomials of fractional-orders outperformed their corresponding counterparts in representing the fine details of a given function. In this work, novel orthogonal fractionalorder Legendre-Fourier moments are proposed for pattern recognition applications. The basis functions of these moments are defined and the essential mathematical equations for the recurrence relations, orthogonality and the similarity transformations (rotation and scaling) are derived. The proposed new fractionalorder moments are tested where their performance is compared with the existing orthogonal quaternion, multi-channel and fractional moments. New descriptors were found to be superior to the existing ones in terms of accuracy, stability, noise resistance, invariance to similarity transformations, recognition rates and computational times.
   
     
 
       

Author Related Publications

  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021 More
  • Khalied Mohamed Hosny, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022 More
  • Khalied Mohamed Hosny, "Fast computation of accurate Zernike moments", Springer, 2008 More
  • Khalied Mohamed Hosny, "Accurate Computation of QPCET for Color Images in Different Coordinate Systems", SPIE, 2017 More

Department Related Publications

  • Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022 More
  • Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
Tweet