Skin Lesions Classification into Eight Classes for ISIC 2019 Using Deep Convolutional Neural Network and Transfer learning

Faculty Engineering Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: IEEE Access ieee Volume:
Keywords : Skin Lesions Classification into Eight Classes for    
Abstract:
Melanoma is a type of skin cancer with a high mortality rate. The different types of skin lesions result in an inaccurate diagnosis due to their high similarity. Accurate classification of the skin lesions in their early stages enables dermatologists to treat the patients and save their lives. This paper proposes a model for a highly accurate classification of skin lesions. The proposed model utilized the transfer learning and pre-trained model with GoogleNet. The model parameters are used as initial values, and then these parameters will be modified through training. The latest well-known public challenge dataset, ISIC 2019, is used to test the ability of the proposed model to classify different kinds of skin lesions. The proposed model successfully classified the eight different classes of skin lesions, namely, melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, dermatofibroma, vascular lesion, and Squamous cell carcinoma. The achieved classification accuracy, sensitivity, specificity, and precision percentages are 94.92%, 79.8%, 97%, and 80.36%, respectively. The proposed model can detect images that do not belong to any one of the eight classes where these images are classified as unknown images.
   
     
 
       

Author Related Publications

  • Mohammed Mohamed Foad, "Efficient Image Communication in PAPR Distortion Cases", England, 2015 More
  • Mohammed Mohamed Foad, "Enhancement the Performance of Compressed Speech Signal Transmitted with Interleaved COFDM System over Doubly Dispersive Channels", Austria, 2015 More
  • Mohammed Mohamed Foad, "Surge Detection System Using Gaussian Curve Membership Function", swithrland, 2014 More
  • Mohammed Mohamed Foad, "IMPROVING THE ACCURACY OF RESIDUAL IONOSPHERIC ERRORS IN THE GPS NAVIGATION SYSTEM", Finland, 2014 More
  • Mohammed Mohamed Foad, "Performance analysis of Speech Quality in VOIP during Handover", swithrland, 2014 More

Department Related Publications

  • Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022 More
  • Ahmed Mahmoud Mahmoud Dawood, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
Tweet