New fractional-order shifted Gegenbauer moments for image analysis and recognition

Faculty Computer Science Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Journal of Advanced Research Elsevier Volume:
Keywords : , fractional-order shifted Gegenbauer moments , image analysis and    
Abstract:
Orthogonal moments are used to represent digital images with minimum redundancy. Orthogonal moments with fractional-orders show better capabilities in digital image analysis than integer-order moments. In this work, the authors present new fractional-order shifted Gegenbauer polynomials. These new polynomials are used to define a novel set of orthogonal fractional-order shifted Gegenbauer moments (FrSGMs). The proposed method is applied in gray-scale image analysis and recognition. The invariances to rotation, scaling and translation (RST), are achieved using invariant fractional-order geometric moments. Experiments are conducted to evaluate the proposed FrSGMs and compare with the classical orthogonal integer-order Gegenbauer moments (GMs) and the existing orthogonal fractional-order moments. The new FrSGMs outperformed GMs and the existing orthogonal fractional-order moments in terms of image recognition and reconstruction, RST invariance, and robustness to noise.
   
     
 
       

Author Related Publications

  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021 More
  • Khalied Mohamed Hosny, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022 More
  • Khalied Mohamed Hosny, "Fast computation of accurate Zernike moments", Springer, 2008 More
  • Khalied Mohamed Hosny, "Accurate Computation of QPCET for Color Images in Different Coordinate Systems", SPIE, 2017 More

Department Related Publications

  • Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022 More
  • Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
Tweet