Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Correlation between grain boundary evolution and mechanical properties of ultrafine-grained metals
Faculty
Engineering
Year:
2020
Type of Publication:
ZU Hosted
Pages:
Authors:
Adel Fathy Meselhy Ibrahiem
Staff Zu Site
Abstract In Staff Site
Journal:
Mechanics of Materials Elsevier
Volume:
Keywords :
Correlation between grain boundary evolution , mechanical
Abstract:
We put stiffness and strength of ultrafine-grained metals under scrutiny by means of experimental and analytical mechanics. Samples of Al 1050 were processed by Accumulative Roll Bonding (ARB) at different cycles to give ultrafine-grained microstructures. The microstructure, strength, and stiffness of the processed Al were analyzed by XRD and SEM. An analytical micromechanical model was developed to explain the predicted changes in the mechanical properties of the ultrafine-grained Al. It was revealed that an ultrafine-grained pure metal (e.g., Al) possesses a heterogeneous microstructure with the grain boundary stiffness lower than the grain/subgrain stiffness. This heterogeneous microstructure gave a decrease-after-increase behavior of the overall stiffness of Al during ARB. The grain boundary fraction of the microstructure increased from 1.9% after 2 cycles to 13.4% after 9 cycles of ARB. The stiffness decreased to 0.73 of its maximum value obtained after 2 cycles. With the aim of changing the stiffness and strength of the grain boundary, other samples were processed such that 4% SiC particles were added to Al sheets during the 1st-ARB cycle. The addition of SiC particles gave stiffer and stronger grain boundaries, which enhanced the overall stiffness and strength during ARB. Both the stiffness and strength were observed continuously increasing during ARB up to 484% and 793% after 9 cycles compared to the unprocessed Al, respectively.
Author Related Publications
Adel Fathy Meselhy Ibrahiem, "Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites", Springer, 2014
More
Adel Fathy Meselhy Ibrahiem, "The effect of Mg add on morphology and mechanical properties of Al–xMg/10Al2O3 nanocomposite produced by mechanical alloying", Elsevier, 2014
More
Adel Fathy Meselhy Ibrahiem, "Effect of Iron Addition on the Microstructure, Mechanical and Magnetic Properties of Al-Matrix Composite Produced by Powder Metallurgy Route", Elsevier, 2014
More
Adel Fathy Meselhy Ibrahiem, "Compressive and wear resistance of nanometric alumina reinforced copper matrix composites", SciVerse ScienceDirect, 2011
More
Adel Fathy Meselhy Ibrahiem, "Prediction of abrasive wear rate of in situ Cu–Al2O3 nanocomposite using artificial neural networks", Springer-Verlag London Limited, 2011
More
Department Related Publications
Mohamed Ali Elsayed Mohamed Agwa , "Critical elastic parameters motivating divergence instability of frictional composite infinitely long media", Springer, 2019
More
Mohammed Adly AttiaIbrahiem , "On the indentation of elastoplastic functionally graded materials", ScienceDirect, 2019
More
Ahmed Wagih Abdallah Abdelhady Deebes, "On the indentation of elastoplastic functionally graded materials", ScienceDirect, 2019
More
Alaa Ahmed Abd elrahman , "On the indentation of elastoplastic functionally graded materials", ScienceDirect, 2019
More
Tamer Ali Abdella Sebaee, "On the indentation of elastoplastic functionally graded materials", ScienceDirect, 2019
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف