Stochastic Fractal Search Optimization Algorithm Based Global MPPT for Triple-Junction Photovoltaic Solar System

Faculty Engineering Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Energies MDPI Volume:
Keywords : Stochastic Fractal Search Optimization Algorithm Based Global    
Abstract:
A significant growth in PV (photovoltaic) system installations have been observed during the last decade. The PV array has a nonlinear output characteristic because of weather intermittency. Partial shading is an environmental phenomenon that causes multiple peaks in the power curve and has a negative effect on the efficiency of the conventional maximum power point tracking (MPPT) methods. This tends to have a substantial effect on the overall performance of the PV system. Therefore, to enhance the performance of the PV system under shading conditions, the global MPPT technique is mandatory to force the PV system to operate close to the global maximum. In this paper, for the first time, a stochastic fractal search (SFS) optimization algorithmis applied to solve the dilemma of tracking the global power of PV system based triple-junction solar cells under shading conditions. SFS has been nominated because it can converge to the best solution at a fast rate. Moreover, balance between exploration and exploitation phases is one of itsmain advantages. Therefore, the SFS algorithmhas been selected to extract the global maximum power point (MPP) under partial shading conditions. To prove the superiority of the proposed global MPPT–SFS based tracker, several shading scenarios have been considered. The idea of changing the shading scenario is to change the position of the global MPP. The obtained results are comparedwith common optimizers: Antlion Optimizer (ALO), Cuckoo Search (CS), Flower Pollination Algorithm (FPA), Firefly-Algorithm (FA), Invasive-Weed-Optimization (IWO), JAYA and Gravitational Search Algorithm(GSA). The results of comparison confirmed the effectiveness and robustness of the proposed global MPPT–SFS based tracker over ALO, CS, FPA, FA, IWO, JAYA, and GSA.
   
     
 
       

Author Related Publications

  • Ahmed Fathy Mohamed Ali Ali, "Optimization of a PV fed water pumping system without storage based on teaching-learning-based optimization algorithm and artificial neural network", ELSEVIER, 2016 More
  • Ahmed Fathy Mohamed Ali Ali, "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions", Elsevier Ltd., 2017 More
  • Ahmed Fathy Mohamed Ali Ali, "Grey Wolf Optimizer for Optimal Sizing and Siting of Energy Storage System in Electric Distribution Network", Taylor & Francis, 2017 More
  • Ahmed Fathy Mohamed Ali Ali, "Parameter estimation of photovoltaic system using imperialist competitive algorithm", Elsevier Ltd., 2017 More
  • Ahmed Fathy Mohamed Ali Ali, "A novel optimal parameters identification of triple-junction solar cell based on a recently meta-heuristic water cycle algorithm", Elsevier Ltd., 2017 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Attia Abdelaziz Hussien Ali, "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet