Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core

Faculty Engineering Year: 2020
Type of Publication: ZU Hosted Pages: 1929–1946
Authors:
Journal: Engineering with Computers Springer Volume: 36
Keywords : Influence , axial load function , optimization , static    
Abstract:
Static stability of beams subjected to nonuniform axial compressive and shear loads is essential in many industrial applications, such as aircraft, automotive, mechanical, civil and naval. Thus, this article tends to investigate and optimize critical buckling loads of thin/thick sandwich functionally graded (FG) beam with porous core, for the first time. The proposed model is developed to consider a sandwich beam with three layers, which has top and bottom FG layers reinforced by single-walled carbon nanotubes (SWCNTs) and core porous layer with various porosity distributions. The variable in-plane compressive load is described by different distributed functions. Parabolic higher-order shear deformation theory of Reddy is adopted to describe kinematic displacement field and consider both thin and thick structures. The equilibrium governing variablecoefficient differential equations are obtained in detail by generalized variational principle. Equilibrium equations are solved numerically by differential quadrature method to get critical buckling loads. Numerical results are illustrated to examine influences of porosity function, porosity percentage, distribution gradation index, load types and boundary conditions on buckling loads of sandwich FG SWCNTs beam with porous core. Particle swarm optimization algorithm is adopted to get optimal axial load function.
   
     
 
       

Author Related Publications

  • Salwa Amien Mohamed ebrhiem, "A novel differential-integral quadrature method for the solution of nonlinear integro-differential equations", John Wiley & Sons Ltd, 2021 More
  • Salwa Amien Mohamed ebrhiem, "Thermal vibration characteristics of pre/post‑buckled bi‑directional functionally graded tapered microbeams based on modifed couple stress Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "New Smoother to Enhance Multigrid-Based Methods for Bratu Problem", Elsevier, 2008 More
  • Salwa Amien Mohamed ebrhiem, "Optimally efficient multigrid algorithms for incompressible Euler equations", Emerald Group Publishing Limited, 2008 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet