Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core

Faculty Engineering Year: 2020
Type of Publication: ZU Hosted Pages: 1929–1946
Authors:
Journal: Engineering with Computers Springer Volume: 36
Keywords : Influence , axial load function , optimization , static    
Abstract:
Static stability of beams subjected to nonuniform axial compressive and shear loads is essential in many industrial applications, such as aircraft, automotive, mechanical, civil and naval. Thus, this article tends to investigate and optimize critical buckling loads of thin/thick sandwich functionally graded (FG) beam with porous core, for the first time. The proposed model is developed to consider a sandwich beam with three layers, which has top and bottom FG layers reinforced by single-walled carbon nanotubes (SWCNTs) and core porous layer with various porosity distributions. The variable in-plane compressive load is described by different distributed functions. Parabolic higher-order shear deformation theory of Reddy is adopted to describe kinematic displacement field and consider both thin and thick structures. The equilibrium governing variablecoefficient differential equations are obtained in detail by generalized variational principle. Equilibrium equations are solved numerically by differential quadrature method to get critical buckling loads. Numerical results are illustrated to examine influences of porosity function, porosity percentage, distribution gradation index, load types and boundary conditions on buckling loads of sandwich FG SWCNTs beam with porous core. Particle swarm optimization algorithm is adopted to get optimal axial load function.
   
     
 
       

Author Related Publications

  • Salwa Amien Mohamed ebrhiem, "A novel differential-integral quadrature method for the solution of nonlinear integro-differential equations", John Wiley & Sons Ltd, 2021 More
  • Salwa Amien Mohamed ebrhiem, "Thermal vibration characteristics of pre/post‑buckled bi‑directional functionally graded tapered microbeams based on modifed couple stress Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "New Smoother to Enhance Multigrid-Based Methods for Bratu Problem", Elsevier, 2008 More
  • Salwa Amien Mohamed ebrhiem, "Optimally efficient multigrid algorithms for incompressible Euler equations", Emerald Group Publishing Limited, 2008 More

Department Related Publications

  • Ashraf Abdelfattah Ali Hassanein, "Hot-Pressed Electrospun PAN Nano Fibers: An Idea for Flexible Carbon Mat", Journal of Materials Processing Technology,2009; 209:4617-4620, 2009 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", www.elsevier.com/locate/compstruct, 2014 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", www.elsevier.com, 2013 More
  • Marwa Ahmed Abdelbaky Salam , "Interlaminar shear behavior of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composite laminates", ScienceDirect, 2012 More
  • Marwa Ahmed Abdelbaky Salam , "Statistical analysis of monotonic mechanical properties for unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid polymeric composites", sage, 2013 More
Tweet