Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory

Faculty Engineering Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Engineering with Computers Springer Volume:
Keywords : Nonlinear thermal buckling , postbuckling analysis , bidirectional    
Abstract:
In the present study, the nonlinear thermal buckling, postbuckling, and snap-through phenomenon of higher-order shear deformable tapered bidirectional functionally graded (BDFG) microbeams are comprehensively investigated under different types of thermal loading, for the first time. The thermomechanical properties of the BDFG microbeam are assumed to be functions of temperature, axial, and thickness directions. Reddy’s parabolic shear deformation beam theory with the von Kármán nonlinearity is employed to derive the variable coefficient governing nonlinear differential equations on the basis the physical neutral surface concept. Size-dependent effect is captured in the formulation employing the modified couple stress theory. The generalized differential quadrature method (GDQM) is used to discretize the motion equations considering different boundary conditions. The resulting system of nonlinear algebraic equations is solved iteratively using Newton’s method. Theoretical analysis and numerical results indicate that, depending on the shear deformation beam theory, boundary conditions, and the type of thermal load, the response of the BDFG microbeam may be of the bifurcation or snap-through buckling type of instability. Numerical parametric studies are conducted to explore the influences of thermal load type, material property gradient indexes, boundary conditions, material temperature dependency, taperness ratio, and microstructural length scale on critical thermal buckling load, thermal postbuckling, and equilibrium paths of the BDFG microbeam.
   
     
 
       

Author Related Publications

  • Salwa Amien Mohamed ebrhiem, "A novel differential-integral quadrature method for the solution of nonlinear integro-differential equations", John Wiley & Sons Ltd, 2021 More
  • Salwa Amien Mohamed ebrhiem, "Thermal vibration characteristics of pre/post‑buckled bi‑directional functionally graded tapered microbeams based on modifed couple stress Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "New Smoother to Enhance Multigrid-Based Methods for Bratu Problem", Elsevier, 2008 More
  • Salwa Amien Mohamed ebrhiem, "Optimally efficient multigrid algorithms for incompressible Euler equations", Emerald Group Publishing Limited, 2008 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet