Thermal vibration characteristics of pre/post-buckled bi-directional functionally graded tapered microbeams based on modified couple stress Reddy beam theory

Faculty Engineering Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Engineering with Computers Springer Volume:
Keywords : Thermal vibration characteristics , pre/post-buckled bi-directional functionally    
Abstract:
This paper investigates the nonlinear vibration characteristics of pre- and post-buckled nonuniform bi-directional functionally graded (BDFG) microbeams subjected to nonlinear thermal loading. The formulations derived herein are based on thermo-elastic constitutive relations of the higher-order Reddy beam theory in conjunction with the modified couple stress theory, von Karman nonlinear strains, and physical neutral plane concept, for the first time. Power-law model is employed to describe the continuous variation of temperature-dependent thermomechanical material properties of BDFG in both the thickness and length directions. Variable microstructure length scale parameter and Poisson’s ratio in both directions are considered. The variable coefficient nonlinear governing equations and associated boundary conditions of nonuniform BDFG microbeam in the thermal environment are derived utilizing the Hamilton principle. The obtained equations are discretized using the differential quadrature method accounting for various boundary conditions, and iterative Newton’s method is adopted to solve the resulting nonlinear algebraic equations. The developed model and solution procedure are validated by comparing the predicted results with those in the available literature. To this end, extensive parametric studies are carried out to explore the influence of linear and nonlinear temperature profiles, microstructure length scale parameter ratio, microstructure length scale parameter-to-thickness ratio, gradient indices in thickness and length directions, material-temperature dependency, and taperness parameters on the nonlinear vibration response and higher-order mode frequencies of tapered BDFG microbeams accounting different boundary conditions
   
     
 
       

Author Related Publications

  • Salwa Amien Mohamed ebrhiem, "A novel differential-integral quadrature method for the solution of nonlinear integro-differential equations", John Wiley & Sons Ltd, 2021 More
  • Salwa Amien Mohamed ebrhiem, "Thermal vibration characteristics of pre/post‑buckled bi‑directional functionally graded tapered microbeams based on modifed couple stress Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "New Smoother to Enhance Multigrid-Based Methods for Bratu Problem", Elsevier, 2008 More
  • Salwa Amien Mohamed ebrhiem, "Optimally efficient multigrid algorithms for incompressible Euler equations", Emerald Group Publishing Limited, 2008 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet