Melatonin Regulatory Mechanisms and Phylogenetic Analyses of Melatonin Biosynthesis Related Genes Extracted from Peanut under Salinity Stress

Faculty Agriculture Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Plants MDPI Volume:
Keywords : Melatonin Regulatory Mechanisms , Phylogenetic Analyses , Melatonin Biosynthesis    
Abstract:
Melatonin improves the tolerance of plants to various environmental stresses by protecting plant cells against oxidative stress damage. The objective of the current study was to determine whether exogenous melatonin (MT) treatments could help protecting peanut (Arachis hypogaea) seedlings against salinity stress. This was achieved by investigating enzymatic and non-enzymatic antioxidant systems and the expression of melatonin biosynthesis related genes in response to salinity stress with or without exogenous MT. The results showed a significant increase in the concentrations of reactive oxygen species (ROS) in peanut seedlings under salinity stress. The exogenous application of melatonin decreased the levels of ROS through the activation of antioxidant enzymes in peanut seedlings under salinity stress. Transcription levels of melatonin biosynthesis related genes such as N-acetylserotonin methyltransferase (ASMT1, ASMT2, ASMT3), tryptophan decarboxylase (TDC), and tryptamine 5-hydroxylase (T5H) were up-regulated with a 150 M melatonin treatment under salinity stress. The results indicated that melatonin regulated the redox homeostasis by its ability to induce either enzymatic or non-enzymatic antioxidant systems. In addition, phylogenetic analysis of melatonin biosynthesis genes (ASMT1, ASMT2, ASMT3, TDC, T5H) were performed on a total of 56 sequences belonging to various plant species including five new sequences extracted from Arachis hypogaea (A. hypogaea). This was based on pairwise comparison among aligned nucleotides and predicted amino acids as well as on substitution rates, and phylogenetic inference. The analyzed sequences were heterogeneous and the A. hypogaea accessions were primarily closest to those of Manihot esculenta, but this needs further clarification.
   
     
 
       

Author Related Publications

  • Ahmed Alsayed Mohamad Omar Elhanafi, "Evaluation of Lactobacillus kefiri and manganese peroxidase-producing bacteria for decolorization of melanoidins and reduction of chemical oxygen demand", Wiley, 2022 More
  • Ahmed Alsayed Mohamad Omar Elhanafi, "Effect of some girdling treatments on fruiting behavior and physio-chemical properties of Washington navel orange trees", IOSR, 2016 More
  • Ahmed Alsayed Mohamad Omar Elhanafi, "Metabolically speaking: Possible reasons behind the tolerance of ‘Sugar Belle’ mandarin hybrid to huanglongbing", ElSevier, 2017 More
  • Ahmed Alsayed Mohamad Omar Elhanafi, "Production of three new grapefruit cybrids with potential for improved citrus canker resistance", The Society for In Vitro Biology, 2017 More
  • Ahmed Alsayed Mohamad Omar Elhanafi, "Characterization of ORF0 and ORF1 and their Roles in Recombination and Replication of Sugarcane yellow leaf virus", Academic Journal Inc., 2017 More

Department Related Publications

  • Hytham Ali Badr Elmorsy, "Live Cell Integrated Surface Plasmon Resonance Biosensing Approach to Mimic the Regulation of Angiogenic Switch upon Anti-Cancer Drug Exposure", American Chemical Society, 2014 More
  • Hytham Ali Badr Elmorsy, "Lectin approaches for glycoproteomics in FDAapproved cancer biomarkers", Informa UK, 2014 More
  • Ibrahim Eid Elsayed Mohamed Eleissawy, "Impact of rice straw mulching on water consumption and productivity of orange trees [Citrus sinensis (L.) Osbeck]", Elsevier, 2024 More
  • Taha Fathy Taha Ibrahiem, "Expression Profile of Redox Active Secondary Metabolites Related Genes Obtained by Transcriptome Sequencing Under Salt and Drought Stress in Sweet Potato", دولي, 2018 More
  • Taha Fathy Taha Ibrahiem, "In Vitro Bio-Medical Studies on Psidium Guajava Leaves", دولي, 2019 More
Tweet