Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
A Comparative Performance Study of Hybrid Firefly Algorithms for Automatic Data Clustering
Faculty
Science
Year:
2020
Type of Publication:
ZU Hosted
Pages:
Authors:
Mohamed El Sayed Ahmed Muhamed
Staff Zu Site
Abstract In Staff Site
Journal:
IEEE Access IEEE
Volume:
Keywords :
, Comparative Performance Study , Hybrid Firefly Algorithms
Abstract:
In cluster analysis, the goal has always been to extemporize the best possible means of automatically determining the number of clusters. However, because of lack of prior domain knowledge and uncertainty associated with data objects characteristics, it is challenging to choose an appropriate number of clusters, especially when dealing with data objects of high dimensions, varying data sizes, and density. In the last few decades, different researchers have proposed and developed several nature-inspired metaheuristic algorithms to solve data clustering problems. Many studies have shown that the firefly algorithm is a very robust, efficient and effective nature-inspired swarm intelligence global search technique, which has been successfully applied to solve diverse NP-hard optimization problems. However, the diversification search process employed by the firefly algorithm can lead to reduced speed and convergence rate for large-scale optimization problems. Thus this study investigates the application of four hybrid firefly algorithms to the task of automatic clustering of high density and large-scaled unlabelled datasets. In contrast to most of the existing classical heuristic-based data clustering analyses techniques, the proposed hybrid algorithms do not require any prior knowledge of the data objects to be classified. Instead, the hybrid methods automatically determine the optimal number of clusters empirically and during the program execution. Two well-known clustering validity indices, namely the Compact-Separated and Davis-Bouldin indices, are employed to evaluate the superiority of the implemented firefly hybrid algorithms. Furthermore, twelve standard ground truth clustering datasets from the UCI Machine Learning Repository are used to evaluate the robustness and effectiveness of the algorithms against those of the classical swarm optimization algorithms and other related clustering results from the literature. The experimental results show that the new clustering methods depict high superiority in comparison with existing standalone and other hybrid metaheuristic techniques in terms of clustering validity measures.
Author Related Publications
Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020
More
Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021
More
Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018
More
Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013
More
Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016
More
Department Related Publications
Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014
More
Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012
More
Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013
More
Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014
More
Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف