Pegfilgrastim (PEG-G-CSF) induces anti-PEG IgM in a dose dependent manner and causes the accelerated blood clearance (ABC) phenomenon upon repeated administration in mice

Faculty Pharmacy Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: European Journal of Pharmaceutics and Biopharmaceutics Elsevier Volume:
Keywords : Pegfilgrastim (PEG-G-CSF) induces anti-PEG , , , dose dependent manner    
Abstract:
Pegfilgrastim is a recombinant PEGylated human granulocyte colony-stimulating factor (G-CSF) analog filgrastim (trade names Neulasta® or G-Lasta®) that stimulates the production of white blood cells (neutrophils). It is employed as an alternative to filgrastim (G-CSF) for chemotherapy-induced neutropenia in patients due to its longer half-life. In clinical settings, PEG-G-CSF is administered to cancer patients via both the s.c. and i.v. routes. In a murine study, we showed that, regardless of administration route, initial doses of PEG-G-CSF above 0.06 mg/kg elicited anti-PEG immune response in a dose-dependent manner. I.v. administration elicited higher levels of anti-PEG IgM than the s.c. route. Initial doses of PEG-G-CSF (6 mg/kg) that were high enough to trigger production of anti-PEG IgM, did not trigger the accelerated clearance of a lower subsequent dose (0.06 mg/kg) that was similar to i.v. clinical doses of PEG-G-CSF, but when the subsequent dose of PEG-G-CSF was raised to (6 mg/kg), the initial dose triggered the accelerated clearance of the second dose via an anti-PEG IgM-mediated complement activation. Similar observations were noted when an increased PEG-OVA dose was given as the second dose, indicating that pre-existing and/or treatment-induced anti-PEG antibodies might compromise the therapeutic activity and/or reduce tolerance of other PEGylated formulations. To the best of our knowledge, this is the first report to suggest the induction of the ABC phenomenon upon repeated injections of pegfilgrastim. In the clinic, cancer patients, receiving multiple cycles of chemotherapy, receive multiple cycles of pegfilgrastim to avoid infections and substantial morbidity. The ABC phenomenon to pegfilgrastim appears to be the cause of loss of clinical benefit of sequential treatments with pegfilgrastim in patients.
   
     
 
       

Author Related Publications

  • Sherif Emam Abdallah Emam, "Cancer cell-type tropism is one of crucial determinants for the efficient systemic delivery of cancer cell-derived exosomes to tumor tissues", Elsevier, 2019 More
  • Sherif Emam Abdallah Emam, "A Novel Strategy to Increase the Yield of Exosomes (Extracellular Vesicles) for an Expansion of Basic Research", J-stage, 2018 More
  • Sherif Emam Abdallah Emam, "Liposome co-incubation with cancer cells secreted exosomes (extracellular vesicles) with different proteins expressions and different uptake pathways.", Sci Rep., 2018 More
  • Sherif Emam Abdallah Emam, "A Novel Strategy to Increase the Yield of Exosomes (Extracellular Vesicles) for an Expansion of Basic Research.", Biol Pharm Bull., 2018 More
  • Sherif Emam Abdallah Emam, "Doxorubicin Expands in Vivo Secretion of Circulating Exosome in Mice.", Biol Pharm Bull., 2018 More

Department Related Publications

  • Ahmed Samer Zedan, "Physicochemical characterization and dissolution properties of rofecoxib complexes with cyclodextrins", لايوجد, 1900 More
  • Ahmed Samer Zedan, "Preparation and characterization of rofecoxib solid dispersions with polyethylene glycols and urea", لايوجد, 1900 More
  • Mahmoud Mokhtar AhmedIbrahiem, "Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes", لايوجد, 1900 More
  • Amr Selim Ahmed Ali Abu Lila, "Use of polyglycerol (PG), instead of polyethylene glycol (PEG), prevents induction of the accelerated blood clearance phenomenon against long-circulating liposomes upon repeated administration", Elsevier, 2013 More
  • Amr Selim Ahmed Ali Abu Lila, "Tumor-type-dependent vascular permeability constitutes a potential impediment to the therapeutic efficacy of liposomal oxaliplatin", Elsevier, 2012 More
Tweet