Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Machine Learning Techniques for Satellite Fault Diagnosis
Faculty
Engineering
Year:
2020
Type of Publication:
ZU Hosted
Pages:
45-56
Authors:
Sarah Khalil Mohamed Ibrahim
Staff Zu Site
Abstract In Staff Site
Journal:
Ain Shams Engineering Journal ScienceDirect
Volume:
11
Keywords :
Machine Learning Techniques , Satellite Fault Diagnosis
Abstract:
Satellites are known as a remotely operated systems with high degree of complexity due to large number of interconnected devices onboard the satellite. Consequently, it has corresponding significant number of telemetry parameters to allow operator and designers have full control and monitor of satellite mode of operation. The tremendous amount of telemetry data received from the satellite, during its lifetime, has to be analyzed in order to monitor and control subsystems health for better decision making and fast responsively. In this research, we address the topic of using machine learning techniques to diagnose faults of satellite subsystems using its telemetry parameters. The case study and source of telemetry are acquired from Egyptsat-1 satellite which has been launched April 2007 and lost communication with ground station last 2010. We applied Machine learning techniques in order to identify operating modes and corresponding telemetry parameters. We used Support Vector Machine for Regression to analyze the satellite performance; then a fault diagnosis approach is applied to determine the most probable reason of this satellite failure. Telemetry data is clustered using k-means clustering algorithm in combination with t-distributed stochastic neighbor embedding (t-SNE) function for dimensionality reduction. We classified data using Logical Analysis of Data (LAD) in order to generate positive patterns for each failure class which is used to determine probability failure cause for each telemetry parameter. These probabilities enable Fault Tree Analysis (FTA) to get the most probable cause that lead to satellite failure.
Author Related Publications
Sarah Khalil Mohamed Ibrahim, "Study of Climate Change Detection in North-East Africa Using Machine Learning and Satellite Data", IEEE, 2021
More
Sarah Khalil Mohamed Ibrahim, "Machine Learning Methods for Spacecraft Telemetry Mining", IEEE, 2019
More
Sarah Khalil Mohamed Ibrahim, "Spacecraft Fault Diagnosis based on Logical Analysis of Data and Fault Tree Analysis", IEEE-4th International Conference on NEW PARADIGMS IN ELECTRONICS & INFORMATION TECHNOLOGY (PEIT’17), 2017
More
Department Related Publications
Mira Magdy Sobhy Suliman, "COMPARISON BETWEEN HAAR WAVELET TRANSFORM, DCT AND A PROPOSED COLUMN-MEAN-METHOD BASED IRIS ENCODERS", جامعة الزقازيق-المجلة العلمية, 2014
More
Ahmed Mohamed Helmy Elsadiek, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022
More
Sarah Khalil Mohamed Ibrahim, "Study of Climate Change Detection in North-East Africa Using Machine Learning and Satellite Data", IEEE, 2021
More
Ibrahiem Elsayed Mohamed Zedan, "Improved subspace identication with prior information using constrained least-squares", IET, 2011
More
Ahmed Mahmoud Abdelrahman Elanany, "Improved subspace identication with prior information using constrained least-squares", IET, 2011
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف