Integrative application of licorice root extract or lipoic acid with fulvic acid improves wheat production and defenses under salt stress conditions

Faculty Agriculture Year: 2020
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Ecotoxicology and Environmental Safety ELSEVIER Volume:
Keywords : Integrative application , licorice root extract , lipoic    
Abstract:
Although different plant extracts and plant growth regulators are used as biostimulants to support plants grown under salt stress conditions, little information is available regarding the use of licorice root extract (LRE) or lipoic acid (LA) as biostimulants. Studies on the application of LRE or LA in combination with fulvic acid (FA) as natural biostimulants have not been performed. Therefore, in this study, two pot experiments were conducted to evaluate the potential effects of LRE (5 g L−1) or LA (0.1 mM) supplemented as a foliar spray in combination with FA (0.2 mg kg−1 soil) on osmoprotectants and antioxidants, growth characteristics, photosynthetic pigments, nutrient uptake, and yield as well as on the anatomical features of the stems and leaves of wheat plants irrigated with three levels of saline water (0.70, 7.8, and 14.6 dSm−1). Moderate (7.8 dSm−1) and high (14.6 dSm−1) levels of salinity caused a significant (p ≤ 0.05) increase in the activities of SOD, APX CAT, POX, and GR as well as in electrolyte leakage, malondialdehyde level, and reactive oxygen species (O2%‒ and H2O2) levels compared to those in controls (plants irrigated with tap water). However, the leaf relative water content, membrane stability index, NPK uptake, leaf area, plant height, spike length, straw yield, grain yield, and protein content of wheat grains significantly (p ≤ 0.05) decreased. Addition of LRE or LA and/or HA to wheat plants under saline stress significantly (p ≤ 0.05) enhanced their morphological and physio-biochemical characteristics in parallel with increases in the activities of enzymatic antioxidants. Salinity stress altered (p ≤ 0.05) wheat stem and leaf structures; however, treatment with LRE + FA significantly improved these negative effects. These findings indicate that FA + LRE treatment significantly improved the antioxidant defense system of the plants, thereby reducing ROS levels and increasing wheat growth and production under saline conditions.
   
     
 
       

Author Related Publications

  • Elsayed Mohamed Desoky, "Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions", Nature, 2021 More
  • Elsayed Mohamed Desoky, "Humus materials and Moringa (Moringa oleifera Lam.) Leaf Extract Modulate the Harmful Effect of Soil Salinity Stress in Sudan Grass (Sorghum vulgare L.)", National Information and Documentation Center (NIDOC), 2019 More
  • Elsayed Mohamed Desoky, "Maize (Zea mays L.) grains extract mitigates the deleterious effects of salt stress on common bean (Phaseolus vulgaris L.) growth and physiology", Taylor& Francis, 2019 More
  • Elsayed Mohamed Desoky, "Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant", ELSEVIER, 2019 More
  • Elsayed Mohamed Desoky, "Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review", Frontiers, 2022 More

Department Related Publications

  • Mohammed Mahmoud Nabil, "ОСОБЕННОСТИ ИЗМЕНЕНИЯ АЛЛЮВИАЛЬНЫХ ПОЧВ ВОСТОЧНОЙ ЧАСТИ ДЕЛЬТЫ НИЛА ПРИ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЯХ", Российского университета дружбы народов, 2013 More
  • Mohammed Mahmoud Nabil, "Quantitative Assessment of Desertification in Bahariya Oasis Environment, Western Desert, Egypt.", .Zagazig uni, 2018 More
  • Mohammed Mahmoud Nabil, "Effect of Mineral Fertilizers and Biofertilization on some Soil Properties and Faba Bean Productivity under Saline Soil Conditions.", Mansoura University, 2019 More
  • Mohammed Mahmoud Nabil, "Estimation of surface runoff using NRCS curve number in some areas in northwest coast, Egypt.", E3S Web of Conferences,, 2020 More
  • Mohammed Mahmoud Nabil, "Soil Water Erosion Vulnerability and Suitability under Different Irrigation Systems Using Parametric Approach and GIS, Ismailia, Egypt.", Sustainability ., 2021 More
Tweet