A Refined Approach for Forecasting Based on Neutrosophic Time Series

Faculty Computer Science Year: 2019
Type of Publication: ZU Hosted Pages:
Authors:
Journal: SYMMETRY-‎BASEL MDPI Volume:
Keywords : , Refined Approach , Forecasting Based , Neutrosophic Time    
Abstract:
This research introduces a neutrosophic forecasting approach based on neutrosophic time series (NTS). Historical data can be transformed into neutrosophic time series data to determine their truth, indeterminacy and falsity functions. The basis for the neutrosophication process is the score and accuracy functions of historical data. In addition, neutrosophic logical relationship groups (NLRGs) are determined and a deneutrosophication method for NTS is presented. The objective of this research is to suggest an idea of first-and high-order NTS. By comparing our approach with other approaches, we conclude that the suggested approach of forecasting gets better results compared to the other existing approaches of fuzzy, intuitionistic fuzzy, and neutrosophic time series.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Saber Mohamed, "Training and Testing a Self-Adaptive Multi-Operator Evolutionary Algorithm for Constrained Optimization", ELSEVEIR, 2015 More
  • Saber Mohamed, "A new genetic algorithm for solving optimization problems", ELSEVIER, 2013 More
  • Saber Mohamed, "Particle Swarm Optimizer for Constrained Optimization", IEEE, 2013 More
  • Saber Mohamed, "Memetic Multi-Topology Particle Swarm Optimizer for Constrained Optimization", IEEE, 2012 More
  • Asmaa Atef Hassan El Sayed, "Composite Heuristic Priority Rules –Based on Tie-Breakers for Scheduling Multiple-Constrained Resource Projects", International Journal of Computer Applications Technology and Research (IJCATR), 2015 More
Tweet