Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Fast computation of 2D and 3D Legendre moments using multi-core CPUs and GPU parallel architectures
Faculty
Computer Science
Year:
2019
Type of Publication:
ZU Hosted
Pages:
2027–2041
Authors:
Ahmed Salah Mohamed Mostafa
Staff Zu Site
Abstract In Staff Site
Journal:
Journal of Real-Time Image Processing volume Springer
Volume:
16
Keywords :
Fast computation , , , , Legendre moments using multi-core
Abstract:
Legendre moments and their invariants for 2D and 3D image/objects are widely used in image processing, computer vision, and pattern recognition applications. Reconstruction of digital images by nature required higher-order moments to get high-quality reconstructed images. Different applications such as classification of bacterial contamination images utilize high-order moments for feature extraction phase. For big size images and 3D objects, Legendre moments computation is very time-consuming and compute-intensive. This problem limits the use of Legendre moments and makes them impractical for real-time applications. Multi-core CPUs and GPUs are powerful processing parallel architectures. In this paper, new parallel algorithms are proposed to speed up the process of exact Legendre moments computation for 2D and 3D image/objects. These algorithms utilize multi-core CPUs and GPUs parallel architectures where each pixel/voxel of the input digital image/object can be handled independently. A detailed profile analysis is presented where the weight of each part of the entire computational process is evaluated. In addition, we contributed to the parallel 2D/3D Legendre moments by: (1) a modification of the traditional exact Legendre moment algorithm to better fit the parallel architectures, (2) we present the first parallel CPU implementation of Legendre moment, and (3) we present the first parallel CPU and GPU acceleration of the reconstruction phase of the Legendre moments. A set of numerical experiments with different gray-level images are performed. The obtained results clearly show a very close to optimal parallel gain. The extreme reduction in execution times, especially for 8-core CPUs and GPUs, makes the parallel exact 2D/3D Legendre moments suitable for real-time applications.
Author Related Publications
Ahmed Salah Mohamed Mostafa, "Artificial Intelligence and Machine Learning-Driven Decision-Making", Hindawi, 2021
More
Ahmed Salah Mohamed Mostafa, "Usages of Spark Framework with Different Machine Learning Algorithms", Hindawi, 2021
More
Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021
More
Ahmed Salah Mohamed Mostafa, "A robust UWSN handover prediction system using ensemble learning", MDPI, 2021
More
Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021
More
Department Related Publications
Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021
More
Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021
More
Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022
More
Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020
More
Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف