Effect of ZrO2 content on properties of Cu-ZrO2 nanocomposites synthesized by optimized high energy ball milling

Faculty Engineering Year: 2019
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Ceramics International Elsevier Volume:
Keywords : Effect , ZrO2 content , properties , Cu-ZrO2 nanocomposites    
Abstract:
In this paper, copper matrix nanocomposites reinforced by 5, 10 and 15 wt% ZrO2 particles were produced using high energy ball milling technique with different milling time. The optimum milling time is predicted analytically and validated experimentally. The effect of ZrO2 content on the morphology, microstructure, microhardness, compressive, electrical and wear properties of Cu-ZrO2 nanocomposites has been investigated. The results revealed that the optimum milling time to produce Cu-ZrO2 nanocomposite with homogenous distribution of reinforcement is 15 h. The compressive strength, the microhardness and wear rate of the Cu-15%ZrO2 nanocomposites are improved by 58.2%, 288% and 19.3%, respectively, compared to pure copper. However, density and electrical conductivity are negatively affected by increasing ZrO2 content. The improvement in the mechanical and wear properties comes from the large reduction of the crystallite size by increasing ZrO2, reaching 32.5, 15.2 and 11.1 nm for samples containing, 5, 10 and 15 wt% ZrO2. Moreover, the reduction in the particle size due to mechanical milling plays a critical role in the improvement of these properties.
   
     
 
       

Author Related Publications

  • Adel Fathy Meselhy Ibrahiem, "Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites", Springer, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "The effect of Mg add on morphology and mechanical properties of Al–xMg/10Al2O3 nanocomposite produced by mechanical alloying", Elsevier, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "Effect of Iron Addition on the Microstructure, Mechanical and Magnetic Properties of Al-Matrix Composite Produced by Powder Metallurgy Route", Elsevier, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "Compressive and wear resistance of nanometric alumina reinforced copper matrix composites", SciVerse ScienceDirect, 2011 More
  • Adel Fathy Meselhy Ibrahiem, "Prediction of abrasive wear rate of in situ Cu–Al2O3 nanocomposite using artificial neural networks", Springer-Verlag London Limited, 2011 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet