Experimental and numerical investigation on strengthening mechanisms of nanostructured Al-SiC composites

Faculty Engineering Year: 2019
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Alloys and Compounds Elsevier Volume:
Keywords : Experimental , numerical investigation , strengthening mechanisms , nanostructured    
Abstract:
In this paper, an accumulative roll bonding (ARB) process is exploited to produce high-strength, fine dispersed and uniform distribution of Al-5vol.%SiC nanocomposite. The microstructure illustrates and validates a good distribution of SiC reinforced in the Al 1050 matrix. It is observed that, an increasing of ARB passes tends to decrease and refine the size of SiC particle to nanoscale. It is concluded from tensile test that, as number of passes increases, strengths of Al ARBed and composite samples are improved. However, their ductility decreases at initial ARB pass and then increased. The Al-SiC tensile strength of nanocomposite sample is greater 5 times than the annealed Al 1050 used as the original raw material. The strengthening of composite sample occurs due to grain refinement, uniformity, reinforcing role of particles, strain work hardening, and bonding quality. From hardness test, after the initial pass, the hardness improved quickly, then dwindled and finally saturated by further rolling. Experimental data is exploited to derive governing equations describe the effect of the number of ARB passes on the tensile strength and elongation of manufactured nanocomposite samples. It is found that, the tensile strength and elongation can be described as an exponential function that depends on the number of passes. Numerical results from these equation are more consistent with experimental investigation.
   
     
 
       

Author Related Publications

  • Adel Fathy Meselhy Ibrahiem, "Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites", Springer, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "The effect of Mg add on morphology and mechanical properties of Al–xMg/10Al2O3 nanocomposite produced by mechanical alloying", Elsevier, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "Effect of Iron Addition on the Microstructure, Mechanical and Magnetic Properties of Al-Matrix Composite Produced by Powder Metallurgy Route", Elsevier, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "Compressive and wear resistance of nanometric alumina reinforced copper matrix composites", SciVerse ScienceDirect, 2011 More
  • Adel Fathy Meselhy Ibrahiem, "Prediction of abrasive wear rate of in situ Cu–Al2O3 nanocomposite using artificial neural networks", Springer-Verlag London Limited, 2011 More

Department Related Publications

  • Samia Fawzy Saad Salam, "تأثير لزوجه المواد الداخليه على تصرف الأجسام المتلامسه المرنه ذات السطوح الخشنه ومتعدده الطبقات ", لايوجد, 1900 More
  • Adel Fathy Meselhy Ibrahiem, "Fabrication and Properties of copper-alumina nanocomposite by mechano-chemical routes", لايوجد, 1900 More
  • Ashraf Abdelfattah Ali Hassanein, "Self Assembled Ultra Fine Carbon Coils by Wet Electro-Spinning", Materials Letters, 2006; 60: 2858-2862, 2006 More
  • Ashraf Abdelfattah Ali Hassanein, "New generation of super absorber nano fibroses hybrid fabric by electro-spinning", Journal of Materials Processing Technology, 2008; 199: 193-198, 2008 More
  • Ashraf Abdelfattah Ali Hassanein, "Wet Electrospun CuNP/Carbon Ultra Fine Coils for Super Air Core Inductors", ICCE-19 Conference, Shanghai, China, 24-30 July 2011. Also, World Journal of Engineering, Supplement 3, 2010: 37-40., 2010 More
Tweet