Effect of tool pin side area ratio on temperature distribution in friction stir welding

Faculty Engineering Year: 2019
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Results in Physics Elsevier Volume:
Keywords : Effect , tool , side area ratio , temperature    
Abstract:
In present work, the friction stir welding (FSW) tools are designed with different surface areas of pin side. The transient temperatures during FSW were measured on advancing side (AS) of top surface, midpoint of the sample thickness, and center on the bottom surface. The results show that the appropriate ratio of pin side area for a defect free FSW of 7075-O Al alloy can be within the range of 23.79–29.83% at 500 rpm rotation speed and 50 mm/min welding speed. It was also found that a higher ratio of pin side area results in a joint with higher tensile strength. Using a semi-spherical pin with high ratio of pin side area (29.83%) produces a friction stir welded joint with higher tensile strength and finer grain size. Based on the presented results, it could be stated that the pin area ratio is one of the main technical parameters of friction stir welding.
   
     
 
       

Author Related Publications

  • Adel Fathy Meselhy Ibrahiem, "Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites", Springer, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "The effect of Mg add on morphology and mechanical properties of Al–xMg/10Al2O3 nanocomposite produced by mechanical alloying", Elsevier, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "Effect of Iron Addition on the Microstructure, Mechanical and Magnetic Properties of Al-Matrix Composite Produced by Powder Metallurgy Route", Elsevier, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "Compressive and wear resistance of nanometric alumina reinforced copper matrix composites", SciVerse ScienceDirect, 2011 More
  • Adel Fathy Meselhy Ibrahiem, "Prediction of abrasive wear rate of in situ Cu–Al2O3 nanocomposite using artificial neural networks", Springer-Verlag London Limited, 2011 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet