Flower pollination algorithm: a comprehensive review

Faculty Computer Science Year: 2019
Type of Publication: ZU Hosted Pages: 155 - 178
Authors:
Journal: المجلة العربية للآداب والدراسات الإنسانية Springer Volume:
Keywords : Flower pollination algorithm: , comprehensive review    
Abstract:
Flower pollination algorithm (FPA) is a computational intelligence metaheuristic that takes its metaphor from flowers proliferation role in plants. This paper provides a comprehensive review of all issues related to FPA: biological inspiration, fundamentals, previous studies and comparisons, implementation, variants, hybrids, and applications. Besides, it makes a comparison between FPA and six different metaheuristics such as genetic algorithm, cuckoo search, grasshopper optimization algorithm, and others on solving a constrained engineering optimization problem . The experimental results are statistically analyzed with non-parametric Friedman test which indicates that FPA is superior more than other competitors in solving the given problem.
   
     
 
       

Author Related Publications

  • Laila Abdel Fattah Shawqi Ibrahim, "Elite opposition-flower pollination algorithm for quadratic assignment problem", IOS press, 2017 More
  • Laila Abdel Fattah Shawqi Ibrahim, "A comparative study of cuckoo search and flower pollination algorithm on solving global optimization problems", emerald insight, 2017 More
  • Laila Abdel Fattah Shawqi Ibrahim, "Metaheuristic Algorithms: A Comprehensive Review", Elsevier‏, 2018 More
  • Laila Abdel Fattah Shawqi Ibrahim, "A comprehensive study of cuckoo-inspired algorithms", Springer‏, 2018 More
  • Laila Abdel Fattah Shawqi Ibrahim, "An improved nature inspired meta-heuristic algorithm for 1-D bin packing problems", Springer‏, 2018 More

Department Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Saber Mohamed, "Training and Testing a Self-Adaptive Multi-Operator Evolutionary Algorithm for Constrained Optimization", ELSEVEIR, 2015 More
  • Saber Mohamed, "An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems", IEEE, 2013 More
  • Saber Mohamed, "Differential Evolution with Dynamic Parameters Selection for Optimization Problems", IEEE, 2014 More
Tweet